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ABSTRACT
Long-term sleep monitoring of patients has been identified
as a useful tool to observe sleep trends manifest themselves
over weeks or months for use in behavioral studies. In prac-
tice, this has been limited to coarse-grained methods such as
actigraphy, for which the levels of activity are logged, and
which provide some insight but have simultaneously been
found to lack accuracy to be used for studying sleeping dis-
orders [8]. This paper presents a method to automatically
detect the user’s sleep at home on a long-term basis. Iner-
tial, ambient light, and time data tracked from a wrist-worn
sensor, and additional night vision footage is used for later
expert inspection. An evaluation on over 4400 hours of data
from a focus group of test subjects demonstrates a high re-
call night segment detection, obtaining an average of 94%.
Further, a clustering to visualize reoccurring sleep patterns
is presented, and a myoclonic twitch detection is introduced,
which exhibits a precision of 74%. The results indicate that
long-term sleep pattern detections are feasible.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous

General Terms
Design, Hidden Markov Model, Kohonen Self Organizing
Map, Support Vector Machine.

Keywords
Activity recognition, sleep detection, long-term monitoring.

1. INTRODUCTION
Spending one third of our life with sleeping, it belongs

to one of the prime activities humans pursue. With sleep
researchers steadily discovering new ways in which sleep im-
pacts quality of life, it has already been shown that a healthy
sleep is at least equally important for our well being as nutri-
tion [7], and that it contributes significantly to regeneration
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Figure 1: Overview of the detection system: long-
term inertial-, time-, and ambient light data from
a wrist-worn unit are analyzed for sleep events of
interest, and synchronized with camera footage for
easy visual inspection.

and healing [3]. On the other hand, habits and choices made
during the wake state are also known to impact the quality
of sleep, such as shifting circadian rhythms, the intake of al-
cohol [21], or changes in ambient light. There is a reciprocal
relationship between sleep and daily life, with shortcomings
and problems in the one tending to easily influence the other.

Since general awareness toward the importance of sleep is
increasing, personal sleep monitoring applications have re-
cently undergone a surge in variety and commercial success.
Many of these units are meant to be worn only during night
while being charged on the nightstand during the day, other
types of units are recording full circadian rhythm data for
multiple, successive days that give more insight in changes
in the user’s habits and rhythms.

The golden standard for observing sleep/wake patterns is
reached by performing a polysomnography (PSG). It incor-
porates multiple sensing modalities to capture relevant sleep
information with typically 20, mostly wired sensors attached
to the patient’s face, torso and limbs. In addition, the pa-
tient is recorded by video for the entire night. As a result,
relevant data can be accurately captured allowing in depth
analysis. However, PSG is limited for short-term observa-
tions, that is, often a few nights are observed only, due to
its cumbersome setup. Such monitoring tends to be uncom-
fortable and less feasible over longer periods.

An alternative approach is performed by actigraphy, which
typically captures levels of activity on a minute-by-minute



basis. It is most commonly implemented as a wrist-worn
device that can be easily deployed and worn without any
additional effort. Used successfully for more than a decade,
it is applied for monitoring patients suffering from sleep dis-
orders [12] and psychiatric illnesses.

While PSG captures in-detail data during sleep over a
single or a few nights only, actigraphy has been used in
somnology as the de facto method for observing long-term
trends that become only evident during weeks or months
[8]. Given such long-term capabilities, actigraphy then also
captures activity levels during the day, resulting in a more
holistic view on human activity. However, in order to in-
terpret the data captured, patients are usually required to
annotate the sleeping and awake times [15]. Also, obtained
data from current actigraphy devices are coarse and limits
the interpretability.

This paper focuses on advancing actigraph-like monitor-
ing by increasing the expressiveness of observed data, while
keeping its long-term monitoring capability over weeks or
months. Our approach is based on three types of obser-
vation techniques relevant to sleeping studies, which were
derived after discussions with the leading somnologist of the
local sleeping lab:

• Sleep posture changes. Persons without sleeping
disorders tend to change postures between 12 and 20
times during relaxed nights [9], but this can go up
significantly in other situations and this can also change
drastically over the course of a night. A view on how
often the patient changed posture and between which
reoccurring postures this happened is therefore helpful,
not only to asses quality of sleep [6], but especially for
particular sleeping disorders such as obstructive sleep
apnea (where certain postures increase apnea [18]) and
restless leg syndrome (where frequent posture changes
are witnessed).

• Myoclonic twitches during sleep. A second fea-
ture of interest are involuntary muscular contractions
made during sleeping, commonly known as myoclonic
twitches, that some people tend to experience when
drifting off to sleep, but also during REM phase, or
while dreaming. Their detection is not straightforward
as these range from subtle and short flexings of (mostly
limb) muscles to violent shakes that can last over a few
seconds [22, 4].

• Video feedback. Real-time and high-frequent video
footage is required by expert somnologists to properly
assess any posture sequences and myoclonic contrac-
tions in sleep study. Even with a more accurate, non-
vision motion detection system of changes in sleep pos-
ture and muscle contractions, interviews with experts
made clear that visual playback of these events is es-
sential in their assessment and in case of doubt.

These techniques were selected as a trade-off between mod-
alities of interest for several sleeping disorders and diagno-
sis types, but yet to obtain with minimal involvement of
the patient. Our overall approach is illustrated in Figure
1. We show that these observations can be performed by
non-obstrusive sensors that can be deployed in any house-
hold environment and run for an extended period of time.
Furthermore, we present an approach to automatically iden-
tify the events of sleeping posture changes and myoclonic

twitches. Our experimental results indicate that awake and
sleep times can be successfully segmented and twitches can
be detected with high precision for further analysis. Based
on such events, video data is pre-filtered in order to extract
and show relevant parts only to the expert and speed up
the analysis significantly. Given its low requirements, it is a
promising approach for monitoring sleep in home settings.

This paper will first situate its approach among related
work of Section 2 in both research and commercial prod-
ucts. Then it introduces in Section 3 the two monitoring
systems and in Section 4 the methods used. In Section 5
two night segmentation methods are evaluated, leading to
Section 6, where the sleep postures within these segments
are clustered. Section 7 focuses on the detection of invo-
luntary muscle contractions during sleep. The final section
wraps up with the contributions made in this paper and
remaining future work.

2. RELATED WORK
The use of actigraphy for sleep study has been widespread

for the last decade, with research and standards of prac-
tice committees [8] recommending actigraphs as reliable and
valid for normal subjects, and a helpful tool in combina-
tion with routine clinical evaluation of insomnia, circadian-
rhythm disorders, and excessive sleepiness. Several recent
wearable products have been targeting sleep phase detec-
tion specifically in order to allow the wearer to wake up at
a more convenient sleep stage, or display sleeping trends for
the users so that they can keep track of their own circadian
rhythms. The most prominent are summarized below:

• The Sleeptracker1 is a wristwatch-shaped unit that
apart from telling the time, also infers whether the
user is in deep sleep, light sleep, or awake, using an
accelerometer.

• The WakeMate2 is a wrist-band actigraphy unit de-
signed to be used together with a mobile phone, to
which it is wirelessly connected, so that the phone’s
alarm is triggered only during the lightest phase of
sleep within a 20-minute window of the desired wake-
up time.

• The aXbo alarm clock3 is packaged as a stand-alone
application in the form of an alarm clock that wire-
lessly communicates with a wrist-band unit.

• The Zeo4 is similarly using an alarm clock base unit
with a worn sensing device, but the latter is a head-
band rather than a wrist-band that measures electrical
activity produced by the brain.

• The FitBit5 is a similar inertial sensor-based device
that can be clipped to clothing or an arm strap, and
comes with software to extract basic sleep information.

More expensive units can be used that target a specific
sleep disorder. For obstructive sleep apnea patients, for in-
stance, a large variety in oximetry and breathing monitoring
products are available. They are not straightforward to set

1SleepTracker: http://www.sleeptracker.com, last access
10/2011
2WakeMate: http://www.WakeMate.com, last access 10/2011
3aXbo: http://www.axbo.com, last access 10/2011
4myZeo: http://www.myzeo.com, last access 10/2011
5FitBit: http://www.fitbit.com, last access 10/2011



up however, are prescribed for shorter studies only and are
not able to detect all types of sleep apnea [10]. A minority
of the above products reveals details on how night segments
are calculated from the basic actigraphy log, making their
detection mechanism hard to reproduce.

Other common techniques include non-wearable solutions
that deploy sensors in the home of the patient. Bain et al.
[1] describe for instance a pressure mapping technology that
could give an extremely detailed view on the total body
posture of the patients throughout the night. Recent re-
search in sensor networks, such as [11], have offered similar
fine-grained approaches to detect and monitor the patient’s
body positions and movements by active RFID-based ac-
celerometers (WISPs) placed on the mattress. Camera-only
methods have also been explored, with [14] as one exam-
ple where the sleeper’s motion is detected by a nightstand
camera’s frame-by-frame differences and estimates of body
posture.

Several studies are dedicated to the detection of body pos-
ture and movements during the sleep, motivated by espe-
cially sleep apnea [23] and as a tool to measure for sleep
quality [14]. This paper addresses the long-term challenges
in particular by integrating methods for night segmentation,
posture clustering, and myoclonic twitch detection, in order
that these can be applied in behavioral monitoring.

3. MONITORING EQUIPMENT
This paper sets out to investigate first and foremost the

detection of posture changes and myoclonic twitches during
sleep. The sensor that is focused on to drive these detections
is a wrist-worn device that records ambient light, the time,
and inertial sensor data for an extended period (at least a
week at a time). For visual feedback of the detections, an
active infrared night-vision unit is used that is synchronized
with the wrist worn sensor. This section will introduce both
of these monitoring platforms.

3.1 Wrist-Worn Sensor
It is unfortunately hard to find publicly-available wearable

data logging platforms that are both comfortable to wear
continuously for several days and nights at a time, and able
to store data while providing high-resolution inertial data.
Yet these requirements are crucial to this paper’s scenario, as
it assumes a long-term deployment of at least several weeks,
no user interaction with the setup in this period, and mini-
mal discomfort to the person that is monitored. Especially
the requirement to capture the myoclonic twitches requires
a relatively high sampling of the accelerometer data, which
makes long-term acquisition particularly challenging.

The presented data in this paper therefore come from a
custom-made prototype: The device that delivers the data
for the posture- and muscular twitch detections is a self-
contained wrist-worn device that records 3D acceleration at
100Hz, as well as ambient light and time and calendar in-
formation. It can record these data on local flash storage
(a removable microSD card) for about 2 weeks before its
rechargeable battery is depleted. Figure 2 depicts the pro-
totype with and without enclosure and straps.

With the OLED display mostly powered off (the wearer
can request the current time by double-tapping the watch),
the prototype runs for about 2 weeks on a 600mAh Li-Ion
rechargeable battery. When the data is uploaded, the USB
connection also provides power to an on-board recharging

Figure 2: The wrist-worn prototype is intended to
be worn continuously and is able to function as a ba-
sic wristwatch (via its OLED display and integrated
realtime clock). It stores data from a 3D accelero-
meter at 100Hz, as well as ambient light data, on a
local microSD-based flash memory.

Figure 3: The InfraRed camera (shown right) is
an off-the-shelf logging device, illuminating the ob-
served area with an array of 7 strong IR LEDs and
producing high-quality 640x480 images, tagged with
second-resolution timestamps. Left are some exam-
ples of test subjects.

circuit connected to the battery. The unit is sealed in a
robust resin enclosure to prevent damage from falls and ac-
cidental splashes of water (subjects were told to remove the
unit when showering or swimming).

With this prototype, continuous study is feasible with 2
week intervals for charging and downloading the data. It is
important to note that nothing more is required from the
wearer of the sensor after starting and attaching it: apart
from its double function as a wristwatch, the user is nor-
mally not required to press buttons, annotate data, or fill
in questionnaires. The algorithms discussed later will filter
out the night segments and sleep events that might be of
interest.

3.2 IR Camera
Unlike in the case of the previously discussed wrist-worn

sensor prototype, there are already a great deal of commer-
cial night-vision cameras available. The TrendNet TV-IP-
422W was chosen in this paper’s deployments as it provides
an adequate resolution at a frequency of 30 frames per sec-
ond, and is equipped with an array of infrared Light Emit-
ting Diodes (LEDs) which are powerful enough to sufficiently
illuminate an area from up to 5 meters away (see Figure 3).
It can be configured to provide the recordings on a network
drive via ethernet or the local wireless network, but also
on local flash storage via a USB connector. A pan-tilt mo-
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Figure 4: The data flow of our method: A contin-
uous dataset of typically several weeks is taken and
analyzed for night sleep segments. Within these,
postures are clustered and assigned colors to visu-
ally represent entire nights, and myoclonic twitches
are detected with their 100Hz 3D signals kept.

tor allows the camera to re-adjust itself to fully focus on
the sleeping subject. At deployment, the camera’s embed-
ded real-time clock is synchronized to that of the wrist-worn
sensor so that data can be merged afterwards.

The IR camera is powered from a wall-socket and as such
can be activated for longer periods of time. The camera
was scheduled to automatically switch off between 11am and
7pm, and was by default configured to store still pictures on
the local flash storage and movies in 10-minute chunks to
an ethernet-attached netbook. Since the data produced by
the camera for one single day sizes to about 9 Gigabytes on
average, this recording setup can remain deployed for longer
stretches of time as well without maintenance. The wireless
capability of the camera was turned off.

The studies in this paper used one camera as a means to
obtain the ground truth for 1) whether the test subject was
sleeping, 2) in which posture the test subject was lying, and
3) myoclonic twitches that were spotted in the data. The
intended usage scenario in this paper uses the camera for
visual inspection by a somnologist: By filtering out every-
thing but the relevant sleeping postures and short movies of
possible myoclonic twitches, a sleep expert has the required
material for visual inspection on a PC of the raw signals of
what the wrist-worn sensor has captured and the subsequent
proposed methods have extracted from them.

4. METHOD OVERVIEW
This paper’s proposed method to find significant events

in sleep based on motion from a highly deployable system
consists out of three major steps. First, the continuously
recorded information from the wrist-worn sensor is automa-
tically processed and segmented into awake and sleep. After
that, non-motion data in the resulting sleep segments that
occur and re-occur are automatically clustered into postures
in order to visualize general trends over several nights. In
a last step, myoclonic twitches are segmented out of the
remaining motion segments. Figure 4 illustrates how the
original raw data from the wrist-worn sensor is processed.

The envisioned scenario of our method comprises the fol-
lowing steps, from preparation to data analysis:

1. The user obtains the camera and wrist sensor

2. The user places the camera in the bedroom, synchro-
nizes with the wrist sensor, and wears the wrist sensor

3. Throughout the monitoring phase of multiple weeks,
both camera and wrist sensor record their data con-
tinuously

4. After the monitoring phase, the wrist sensor is syn-
chronized with the camera, and the proposed method
provides:

• the sequence of clustered postures per night

• the detected myoclonic twitches per night

• video footage of extracted events

The following section starts with segmenting continuous
data into sleep and awake segments.

5. NIGHT SEGMENTATION
We present in this section an adaptive method that ex-

tracts nightly sleep segments from the wrist-worn sensor’s
continuous recordings, using a method that can be boot-
strapped from time-use data and personal recordings, com-
bined with measured light intensity and physical motion.

5.1 Time of Day
The time of day is generally a strong clue for estimating

the night sleep segment in a day, as most people tend to ad-
here to a strict circadian rhythm with regular bed- and wake-
times. Furthermore, with the help of time-use databases, it
is feasible to start off with a prior estimate that is generated
from a sizable amount of questionnaire results.

The wrist-worn sensor logs its data with timestamps that
are provided by the on-board real-time clock. With an ex-
pected deviation of approximately 2 seconds per week, this
is sufficient to fuse the recorded data with those from other
modalities such as the IR camera. For characterization of
the night-time sleep segment, the minute of the day is ex-
tracted from the complete timestamp (which holds other
information such as year, month, day, and day-of-week as
well).

A user-specific model for linking time of day to the night
sleep segment is trained from recorded data, as will be done
for the other two features. However, in the case of time of
day, it is also possible to use existing information that is col-
lected and made available by national statistics agencies or
commercial institutions on what activities people tend to do
during the day. Inspired by a study by Partridge and Golle
[20], which illustrated that it is possible to use these often
large-scale datasets to create informed activity classifiers,
this was found particularly promising in the special case of
sleep, for which an exceptionally large amount of samples
are available in time-use study data.

The left plot in Figure 5 shows a minute-by-minute nor-
malized histogram collected from such a database6. The
right plot of Figure 5 shows for comparison the same infor-
mation from one of our test subjects.

6Obtained from the Federal Statistical Office (Statistisches
Bundesamt) in Germany from a total of over 12000 parti-
cipants, which kept diaries of daily activities for three days
each.
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Figure 5: An example of typical sleeping times, from
a 12000-subjects time use study over a period of
3 days each (left), and a one-person dataset over
30 days (right). Similarities in both diagrams are
visible and are used as prior for 2 different classifiers.

5.2 Ambient Light
A second feature candidate for detecting overnight sleep

segments is the absence of light in the environment, as most
people tend to sleep in darkened environments. Studies have
shown that the gradually dimming light at dusk and increas-
ing light at dawn are used to regulate sleep and wake up
times, and that these could be used in sleep therapy [19].
The mean over several light sensor values of a specified time
frame is used as a feature.

The wrist-worn sensor has been designed so that the am-
bient light sensor is directed outward, to avoid as much as
possible an occlusion by long sleeves or jackets. Further-
more, the sensor, a TSL250 photodiode, has been chosen
and configured for maximal sensitivity to light while pro-
viding a low dark (offset) voltage. The prototype reads the
voltage at full 12-bit resolution, providing a sensor read-
ing that is capable of detecting particularly small lighting
changes under poorly-lit environmental settings.

5.3 Physical Activity Intensity
A large body of research, including many studies using

actigraphy, indicates that activity intensity levels tend to be
more elevated during the day and fairly low during the night
for subjects with normal sleeping behaviors. As such, this
can be used as a discriminant feature for the recognition of
the night sleep segments. Since the wrist sensor in our stu-
dies is worn on the dominant hand, and since the sampling
of the on-board accelerometer is set at a frequency of 100Hz
in order to capture the myoclonic twitches, the calculation
of standard deviation provides a robust value to represent
the wearer’s activity level.

5.4 Evaluation
This section will discuss the use of the previously de-

scribed time, ambient light and physical amount of motion
features to estimate the start and stop times, as well as du-
ration, for the night sleep segments in continuously recorded
long-term data. Two classifiers are used: One baseline algo-
rithm that performs simple histogram-based thresholding on
the training data, and one Hidden Markov Model (HMM)
based classifier [17, 16] which uses observation sequences of
the previously described features.

sub gen age hrs comments

1 female 33 336 at 5th month of pregnancy

2 male 30 1344 normal sleep

3 male 30 432 normal sleep

4 male 28 624 irregular night segments

5 male 35 360 periodic limb movem. disorder

6 male 35 672 delayed sleep phase syndrome

7 male 61 648 early morning awakening

8 male 26 576 irregular night segments

Table 1: The group of participants used in the eval-
uation, specifying gender, age, the length of their
dataset in hours, and additional factors which are
likely to be sleep-relevant. Two of the participants
were diagnosed with a sleep disorder, the six others
have no known sleep disorders.

For the evaluation of the night segmentation, we used data
recordings from a variety of test subjects as summarized in
Table 1: These were selected to ensure that several different
types of subjects were being included and that the segmenta-
tion algorithm can be properly stress-tested with sufficiently
contrasting types of sleeping behaviors. Two of the test sub-
jects were included that are diagnosed with a specific sleep
disorder, one female subject was monitored being 5 months
pregnant, and one elderly test subject was included. All
subjects were recruited outside the sleep lab environment to
first test the set-up within the research community. A se-
cond phase will be set to record patients from a local sleeping
lab (see Section 9).

The datasets were split up for the experiment in sepa-
rate subsets with a duration of 24-hours each, from noon on
one day to noon on the next, so that each timespan would
contain exactly one night sleep segment. The classification
performance of the segment was then measured in both a
leave-one-day-out and a leave-one-user-out cross-validation
experiment. The purpose of these two experiments is to 1)
see how well the algorithm performs on previously trained
data from the same user, and 2) how well the classification
does on data from a new user.

Classifier 1: Threshold-based segmentation. The
first algorithm is a Gaussian model-based classifier that cal-
culates the variance and mean parameters for the light in-
tensity and motion data from the training data, and uses a
likelihood per minute of the awake state from the time-use
database. New data is used as input to the model and a
thresholded vote among all values over a sliding window of
several (5, 10, or 15) minutes is then used to classify the
night sleep data in a robust way.

Classifier 2: HMM-based segmentation. The sec-
ond algorithm is based on two two-state discrete Hidden
Markov Models (HMMs), which enables capturing changes
in sleep habits for new training data efficiently. As features
the variance of acceleration, mean of light and time of day (in
minutes) are used. The first HMM models the data taken
during the awake state, and the other for the sleep state.
After training the HMMs, the highest likelihood for new se-
quences for each classifier of several minutes (5, 10 and 15)
from the testing data decides whether the method assigns
the latest observation in this sequence as asleep or awake
data.
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Figure 6: The recall values for the threshold-
based (Thres) and HMM-based classifiers for the
best performing window size of 10 minutes, ob-
tained through leave-one-night-out cross-validation
and displaying the total recall (T).

per subj across subj
subj prec rec acc prec rec acc

1 0.79 0.98 0.91 0.88 0.98 0.95
2 0.92 0.98 0.97 0.92 0.96 0.96
3 0.87 0.98 0.94 0.95 0.98 0.97
4 0.87 0.97 0.94 0.92 0.97 0.96
5 0.82 0.98 0.92 0.95 0.89 0.94
6 0.72 0.98 0.86 0.96 0.97 0.97
7 0.93 0.98 0.97 0.80 0.75 0.84
8 0.89 0.98 0.95 0.96 0.98 0.98

T 0.85 0.98 0.93 0.92 0.94 0.95

Table 2: The HMM precision (prec), recall (rec),
and accuracy (acc) results for all subjects under per-
subject training (left half of table) and cross-subject
training (right half of table). Results are from leave-
one-day-out and leave-one-subject-out cross valida-
tion respectively.

5.5 Results for night segmentation
Results for recall are summarized in Figure 6, depicting

the cross-validation results for person-dependent training.
A comparison between the two classifiers resulted in a set
of close detection scores, both peaking at a window length
of 10 minutes. However, in case of subject 5, where a lot
of motion is present during the night, larger differences can
be observed in the results for both person-dependent and
cross-subject training. Classifier 1 uses as prior for sleep
the time-use database, leading to lower recall in contrast to
classifier 2.

Table 2 lists the results for the HMM-based method using
a 10-minute window, which performed best over all tested
parameters. In general, the results perform well for most
subjects, with cross-user training performing slightly better
for most test-subjects. A significant outlier is the result set
from subject 7, where the recognition results are hurt from
cross-user training. This is explained by the severe early
morning wakeup times (4am on average) and the overall
higher amount of motion throughout nights, hurting espe-
cially the recall of night segments.

Figure 7 shows an example where the night segments for
several weeks of data from one person (subject 2) are classi-
fied. Gaps in the data correspond to sections of the dataset
between recordings or sections where the device was inten-
tionally turned off. Typical false positives can be seen as
small sections in the late evenings, where this test subject
was often watching television in a darkened environment.

Figure 7: The raw classification output from
night segmentation (black rectangles) for the entire
dataset from test subject 2 (with each row represent-
ing a day’s acceleration data) for the HMM-based
classifier.

Such false positives were discarded by selecting the largest
segment only as the most likely night sleep segment for fur-
ther analysis.

5.6 Discussion
From the experiments in this night sleep segmentation

section follows, that a high recall classifier can extract most
of the night sleep segments from continuous activity data.
A suitable scenario for our classifier is the detection of ad-
vanced or delayed sleep phase syndrom [24], since we train
the classifier on personal sleeping habits, which is identified
by the classifier in the shift of night segments. This sleep-
ing disease is characterized by a patients habit to go to bed
late and wake up late (delayed) or go to bed early and wake
up early (advanced). Deriving a prior from such a sleep-



ing habit is feasible with our system and requires a person
dependent training for the classifier.

Although all the test subjects were asleep only during the
night, the HMM classifier should be able to detect sleep
during the day if training data is available. Data from a
person napping during the day is used as training data for
the HMM, which is able to adapt to this scenario. Further
studies need to be conducted to confirm this theory.

The remaining steps taken in our tool split these segments
into much smaller segments of either non-motion or motion
to detect two types of sleep features of interest.

6. POSTURE CLUSTERING
From the method described in the previous section, our

tool obtains a set of candidate night segments, which are
focused on to find two features that are relevant to characte-
rize sleep: The first being described in this section will give
a coarse-grained view on a subject’s postures from static
data and their common occurences through all night seg-
ments and how long they lasted. The next section will look
at the non-static data and detect candidate occurrences of
myoclonic twitches. Although the filtering of the night sleep
segment for non-motion data is straightforward, the main
question that will be answered in this section relates to how
these static postures can be visualized most appropriately.

The reoccurring sleep postures are modeled by using a
clustering method which facilitates on optimal visualization
of the posture sequences later on. Similar to the popular k-
means method, the Kohonen Self-Organizing Map (KSOM)
[13] is a clustering algorithm that holds a fixed number of
cluster centroids, to which new data samples are clustered
in an iterative way by selecting and updating the cluster for
which the centroid is closest to this new input. 36 cluster
centroids are chosen for that, keeping the range of the map
small, which are allocated on a semantic map created by
the KSOM. Similar values are mapped close together, while
dissimilar are mapped apart. The choice for the Kohonen
map brings in this case an added value in terms of visualiza-
tion: By requiring that clusters are structured along a tight
topology, neighboring clusters obtain centroids after train-
ing that are close in Euclidean space. By then assigning a
gradual color map to the Kohonen clusters, the clustering of
posture data will result in similar postures being assigned a
similar color. Thus, even if not the same cluster is assigned
to 2 similar postures, the visual representation for both will
look very much alike.

The color-code is obtained by using as training input the
night segments from all subjects which leads to a unique pos-
ture coloring for each subject. The map grid coordinates are
normalized to a unit square, and each coordinate is mapped
to a color. As output we receive a grid allocation, which is
used as input for a HMM classifier that is trained to show
similarities through the dataset per subject, resulting in a
typical posture sequence which was used in the following
section.

6.1 Evaluation
The method to evaluate the posture representation is to

conduct a straight forward survey by multiple users. The
users were recruited in the research facilities, but also among
friends and family. The survey consists of posture represen-
tations of several nights by five subjects and is displayed
to 60 users (Figure 9). Then a single night from each of

e) 

d) 

c) 

b) 

a) 

Figure 8: Visualization of the typical nights of the
5 subjects (a-e). The correct combinations to the
data sets in Figure 9 are: 1c, 2d, 3b, 4a and 5e.

the subjects was shown to the users (Figure 8, a)-e)). The
users were asked to assign each of these nights to the night-
collection of subjects from Figure 9.

The results of the survey were obtained as follows: The
amount of correct answers per typical night (figure 8 a-e) is
divided by the amount of participants, resulting in an accu-
racy per question. The overall accuracy is then calculated by
the sum of each individual accuracy divided by the amount
of questions.

6.2 Results
An overall accuracy of 92% is gained for correct allocation

of the typical night to the subjects. Figure 9 shows how the
test subjects differ in their postures. A suitable scenario of
such a representation is to compare a new night of a patient
to the previous nights just by the color encoding which leads
directly to outliers, which then can be scrutinized further.

While conducting the inquiry, some users had problems
allocating the typical night to subjects 1 and 2, since they
exhibit similar coloring. The postures of subjects 3 and 4
contain a lot of turquoise-like coloring, but differ in occur-
rence of red. Assigning the night to subjects 4 and 5 was
almost perfect with an accuracy of about 99%, showing ex-
plicit postures for each subject.

6.3 Discussion
Interestingly, the instances of nights could be assigned

almost perfectly within our study. While we performed a
feasibility study that investigates the visual preservation of
typical nights using user identification, the promising results
are interesting for a different reason. When observing a sin-
gle user only, the same method can be used to identify non-
typical nights which can serve as indicator for somnology
analysis.

During the survey we displayed five subjects and their
color-coded postures to different users and without explain-
ing for which purpose this inquiry was conducted, partici-
pants immediately began answering the questions. This can
be explained by the way the information was presented: u-
sing colors as representation of the posture characteristics
simplifies analysis. However, in a first questionnaire we dis-
played the postures from all 8 subjects with their typical
nights. Again, people were asked to allocate the nights,
which proved to be difficult, since too many plots with col-
ors were displayed at once. Therefore, the optimum repre-
sentation of five subjects was chosen, since the feasibility of
assigning postures correctly is the goal of this study.

After the posture data has been removed from the night
segments, the data that remains is a mixture of motion data
from the subject moving between postures, the subject mov-
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Figure 9: The color coded postures used in the survey for allocating typical nights to subjects. Displayed are
all night-collections from subjects 1 to 5.

ing during wakeful periods, and a third type of involuntary
motion which requires a specific detection step. This step is
described in the next section.

7. MYOCLONIC TWITCH DETECTION
Myoclonic twitches describe spontaneous muscle contrac-

tions and occur by sporadic limb movements. Note, that it
is not the number of twitches that is relevant, but how such
twitches are expressed. Therefore, we propose to optimize
the precision, leading to a low false positive rate, to identify
such events. Given few but correct twitches, the video data
can be pre-filtered and facilitate analysis for experts signifi-
cantly. Our classifier is thus optimized for high precision at
the cost of lower recall.

The following two-step process is used to detect myoclonic
twitches from the data that was not assigned as posture:
First, filtering is done on the duration of the motion in ques-
tion: since it is known that these twitches are generally not
longer than mere seconds, any segment over three seconds
is discarded. From the remaining motion data we calculate
three different features, which describe a twitch pattern. At
first, we calculate the length of the motion data, than
we determine the euclidean distance of the start and
end values of the motion segment since a twitch mostly re-
sults in almost the same wrist position as before twitching.
Lastly, the distance between the minimum and max-
imum of the motion data is computed since non-twitching
motion data exhibits larger peaks in contrast to twitches.

These three features are used as input to a support vec-
tor machine (SVM) [5], a common linear classifier which
is trained on sample data from both myoclonic twitches as
positives and posture changes as negatives, obtained by an-
notations where these events were also clearly visible on the
video footage. Figure 10 displays different types of myocloni

night p 1s r 1s p 2s r 2s p 3s r 3s

1 0.58 0.96 0.62 0.75 0.55 0.48
2 0.71 0.94 0.76 0.71 0.74 0.51
3 0.59 0.70 0.74 0.57 0.88 0.41
4 0.77 0.67 0.81 0.67 0.80 0.51
5 0.50 0.78 0.71 0.59 0.71 0.47

T 0.63 0.81 0.73 0.66 0.74 0.48

Table 3: The precision (p) and recall (r) results for a
detection window of 1, 2, and 3 seconds on a subset
of five nights by one subject for which clear video
footage was used to obtain ground truth. Additio-
nally, the total (T) results for p and r are shown.

which occurred in the data set, including multiple ones from
subject 5, suffering from periodic limb movement, appearing
in short intervals of several seconds.

7.1 Evaluation
Evaluation was performed using a 5-fold leave-one-night-

out cross-validation, using video footage to denote ground
truth for the twitch detection. The evaluation of the my-
oclonic twitch classifier was performed on a one-person sub-
set of the dataset only, since participants 4, 5, and 6 dis-
played obvious myocloni in their data, with only participant
5, suffering from a periodic limb movement disorder, deliv-
ering a significant amount of twitches.

7.2 Results
Table 3 shows the precision and recall figures for the SVM

classifier based on different initial windows, showing an ideal
window size between 2 and 3 seconds. From visual in-
spection of the false positives, many could be contributed



Figure 10: Some examples of the observed myoclonic
patterns, including consecutive multiple twitching,
which occurred during nights of mostly subject 5
over less than 3 seconds.

to external factors that were neither myocloni nor posture
changes, but rather conscious short motions during awake
periods. Missed detections largely constitute very slight con-
tractions.

The results are preliminary but demand to be further
evaluated within a cooperation at a sleeping lab, where myo-
cloni can be detected accurately and without painstakingly
browsing the data for possible twitches, as was done in this
study.

8. SYSTEM DISCUSSION
During the process of building and perfecting the pro-

totypes for this system and instructing subjects on its us-
age, several surprising issues and obstacles had to be solved.
Apart from the predictable difficulties that come with de-
signing robust measurement prototypes and deploying ubi-
quitous technology in domestic environments, especially those
worn 24/7, other interesting lessons were learned. The fol-
lowing sections will discuss these in more detail.

8.1 Video Footage
One advantage of the continuous logging that was not

specifically focused on so far, is the ability to correlate ac-
tivity during the day with possible effects for the following
nights. This requires an activity recognition component,
however, which might be added at a later stage. Similarly,
one might expect the video footage to be exploited more
and analyzed for steady body postures and sudden motions
instead of relying on a body-worn sensor. An initial study
investigating this avenue met a lot of obstacles during the
first datasets, as illustrated in Figure 11. The same limi-
tations hold also for the visual inspection: especially for
the occlusion by blankets, exact body postures and twitches
are sometimes hard to verify. In our experimental that was
largely taken during wintertime, this amounted for instance
to about 18% of all myoclonic twitches observed in the wear-
able data.

Figure 11: Potential difficult situations for vision-
based recognition that were observed during the
study: multiple participants in the scene, reflecting
metallic objects such as piercings, pets moving into
the bed, and thick blankets covering the entire par-
ticipant.

8.2 Privacy Issues
Recording subjects in their most private room - the bed-

room - is a delicate matter and required a privacy consent
for the subjects to be signed. For this purpose we used
the privacy guidelines from [2]. It was ensured that all the
data was anonymized, stored in a secure place and used only
by allowed researchers. From our experience with the test
subjects, ensuring the privacy with a privacy policy is the
minimum requirement for conducting such studies.

8.3 Timing Considerations
As monitoring periods will be extended to the scale of

months, one issue that can be expected to become promi-
nent is a possible larger drift between the wrist sensor’s time-
stamps and those embedded in the pictures and movies. For
the study data recorded for this paper, an extra 2 seconds
were attached before and after the signal, and a variable off-
set was built in the visualization tool to match the 100Hz
accelerometer signal and the recorded movie more perfectly.
As drifts due to temperature and humidity fluctuations con-
tinue over longer periods, this approach might become less
scalable when aiming at year-long logs.

9. CONCLUSIONS AND FUTURE WORK
A tool is presented and evaluated, which combines effort-

less deployment with capturing of expressive sleep. Given
automatically detected events during sleep, data is synchro-
nized with a camera to highlight relevant events and extract
them from a large corpus of data which is infeasible to be
skimmed by humans. Given these properties it enables video
analysis in the wild and additionally uses a power-efficient
wrist-worn activity sensor for long-term recording. The sen-
sor data is analyzed with an HMM-based method for occur-
ring night sleep segments, which are in turn analyzed for
reoccurring postures and myoclonic twitches. Visual inspec-
tion is built in the tool by means of an IR camera, which
together with detection techniques that are chosen to de-



liver a high recall on detections, make the output available
for scrutinizing by sleep experts.

Using ’in vivo’ datasets from eight test subjects with a
high variety of sleeping patterns, evaluation shows that night
segmentation with high recall (i.e., almost all sleep segment
data is retrieved) can be achieved by fusing an HMM-based
method with a model obtained by a time-use study. We also
found that a common clustering technique is sufficient to ac-
curately capture the most striking sleep postures, which was
evaluated by users who assigned typical nights to a subject
with an overall accuracy of 92%. The detection of myoclonic
twitches, optimized for a high precision (to avoid swamping
the system with false positives) was able to achieve precision
and recall of 73% and 66% respectively.

Previous sleep research involving myoclonic twitches indi-
cates that they are more likely to occur in data from peo-
ple with an irregular sleep schedule and sleep deprivation.
The tool resulting out of this study enables detection of my-
oclonic twitches over long monitoring periods with an inex-
pensive setup of devices. Further studies on a variety of sleep
disorder patients are planned in local sleep laboratories but
also in the patient’s home, where this tool’s effectiveness is
evaluated as a complimentary technique to more expressive
features of sleep which allow inference of sleep quality. The
variety of people, either with or without sleep disorders will
give an insight into features that are suitable for detecting
sleep quality.
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