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ABSTRACT
This paper proposes an activity inference system that has
been designed for deployment in mood disorder research,
which aims at accurately and efficiently recognizing selected
leisure activities in week-long continuous data. The approach
to achieve this relies on an unobtrusive and wrist-worn data
logger, in combination with a custom data mining tool that
performs early data abstraction and dense motif discovery to
collect evidence for activities. After presenting the system
design, a feasibility study on weeks of continuous inertial
data from 6 participants investigates both accuracy and exe-
cution speed of each of the abstraction and detection steps.
Results show that our method is able to detect target activi-
ties in a large data set with a comparable precision and recall
to more conventional approaches, in approximately the time
it takes to download and visualize the logs from the sensor.
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INTRODUCTION
The automated recognition of the user’s activities has been
suggested for over a decade as an attractive system feature
in pervasive computing literature. By relying on observa-
tions from sensors that are deployed in the environment of
the user, or worn on his or her body, knowledge of recog-
nition activities can be extracted. This technology is moti-
vated by establishing a more effective dialogue between user
and computer, reducing cognitive load in pervasive comput-
ing scenarios, or delivering an improved service by proac-
tively responding to given situations. Numerous applica-
tions have been suggested to benefit from activity recogni-
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Figure 1. Day-and-night recordings from an unobtrusive sensor (top)
are in this paper’s approach analyzed for certain leisure activities.
Salience detection upon motif discovery (bottom) is used to find typical
activity patterns (black marks) as supporting evidence for the activity.

tion: The authors of [20] for instance demonstrate how Ac-
tivities of Daily Living (ADLs) can be detected, which are
used in estimating the quality of self-care for elderly users.
Further application scenarios for activity recognition include
detecting office activities [17], maintenance tasks performed
by engineers [21] and specific sports activities [8], finding
appropriate advertising based on the user’s physical activity
[18] and eating and drinking activities [1]. Depending on the
application, algorithms can go beyond recognition of activi-
ties and detect certain characteristics, such as the number of
counts for selected gym workouts [3].

This paper’s activity recognition approach is motivated by
an application scenario that is relatively new: Psychiatric
patient monitoring aims at characterizing both mood and be-
havioral trends by recording activity data over a period of
typically several months. Current commercial solutions1 are
able to detect sleep and wake cycles for such long deploy-
ments, and come with tools for facilitating the recording of
certain physical activities. In this scenario, a few of the
general problems in activity recognition become trivial to
solve: Patients already detail their activities in diaries so su-
pervised learning methods can be employed, and only a few
key leisure activities are of interest among the logged data.
Other requirements, however, form new challenges: Sensors
need to record for long stretches of time, the large amount of
logged data needs to be analyzed fast enough, and detection
needs to be robust against a deluge of background data.

1e.g., the Actiwatch: http://www.camntech.com/ [3/2012]
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Figure 1 illustrates the dense motif discovery method that
forms the basis of our detection approach. Occurrences of
so-called motifs are searched in the data, which are then used
to substantiate the presence of an activity within the data.
Motifs are discovered at training time by abstracting the raw
acceleration samples in function of sequences of peak pat-
terns, and efficiently searching for such similar patterns by
means of a data structure called suffix tree. This search can
be implemented in linear time, and performs a strong ab-
straction in comparison to traditional acceleration features
(such as mean, variance, or FFT coefficients), at the cost of
a processing overhead. Classification is then implemented
with a straightforward bag-of-words classifier. An extra ad-
vantage of this method is that the illustration of motif occur-
rences in the time series allows for visual inspection of the
activity recognition before the classification step. The main
contributions of this work are threefold:

• We use a specific mood monitoring scenario as an ac-
tivity recognition application with interesting constraints
that impact both sensor and the software system design.

• A deployable system has been built consisting of a min-
imally invasive, wrist-worn sensor that is able to last for
two weeks on a single battery charge while recording ac-
celeration samples at 100Hz, and a data analysis tool that
can efficiently process the recorded data.

• A novel detection approach is suggested that is suitable
for classifying large amounts of long-term activity data,
relying on local shape features within the acceleration sig-
nal and dense motif discovery.

The remainder of this paper is structured as follows: First,
a psychiatry monitoring scenario motivates the need for the
proposed fast and accurate detection of when a user performs
physical leisure activities. Then a section is dedicated to re-
lated work in activity recognition, with particular focus on
methods that aim for long-term deployments, and other mo-
tif discovery research in particular. The next section will
then go into details on the different design choices and steps
that constitute our method, such as the linear abstraction of
inertial data and the use of suffix trees for finding motifs.
An experiment then presents results on several long-term
datasets how fast and robustly the chosen activities can be
recognized among a large amount of daily activity data. The
paper is wrapped up with the conclusions section enumer-
ating the key findings of this paper, as well as the future
research potential.

MOTIVATION: PSYCHIATRIC MONITORING SCENARIOS
Research in mood disorders relies frequently on the patients’
self-reports, as well as semi-structured interviews with a psy-
chiatrist, both during diagnosis and therapy. Emerging work
with actigraphy tools and activity measurement in psychiatry
[28, 24] has started to deploy wrist-worn sensors in conjunc-
tion with these tools that are recording the activity intensities
observed for the patient over intervals of several seconds to
minutes at a time. Such studies have found to be valuable
in a range of mood disorder studies, such as attention deficit
hyperactivity disorder (ADHD) and bipolar disorder [6].

Characterized by severe mood swings between manic or hy-
pomanic, mixed, as well as depressive episodes, it is im-
portant in the diagnosis of a bipolar disorder to observe the
patient’s activity behavior over multiple weeks to months at
a time. For mania for instance, energy levels tend to be high
and activities tend to be performed in an interleaved fashion
or especially vigorously (e.g., performing sports exercises
longer without breaks). Similarly, depression tends to show
in lower activity levels or the way patients behave during
key activities, from not performing them at all or sparsely, to
not fully completing them. Apart from daily activities such
as sleep and food intake, especially physical and leisure ac-
tivities are very likely to be impacted: Patients might for
instance stop playing tennis when depressed, or vigorously
practice for several hours in a manic episode.

In collaboration with psychiatrists specializing on actigra-
phy and ambulatory assessment of bipolar disorders, several
interviews were held to list the basic requirements and ex-
pectations that an activity recognition method should adhere
to. These were grouped in three categories that are important
factors to consider when designing an activity recognition
system for this field:

• Supervised learning. Patients are normally interviewed
at regular intervals of several weeks, and provide in many
cases log entries where they report on performed tasks
and their mood assessment. Recent actigraphy systems
already combine this information with the sensor data,
so that in a similarly-developed activity recognition ap-
proach this can be used as an approximate annotation to
train a patient-specific classifier.

• Week-long, 24/7 data. It is crucial that data is contin-
uously captured at all hours of the day, as patients that
go through depression or manic episodes are known to
perform activities at irregular times, including night time.
As a result, the sensor units need to be robust and power-
efficient enough to keep recording for such long times-
pans without breaks, and the amount of data that need to
be recorded will be substantial to process.

• Leisure activities. The number of activity classes that
need to be recognized is relatively small (often 1) and can
be determined by the psychiatrist during the first phases of
diagnosis. This makes it easier for patients to keep track
of what activities were performed, and this also impacts
activity recognition, since only few activities need to be
detected amongst a large amount of background data that
might produce false positives.

This paper focuses first and foremost on a practical captur-
ing and detection method that is able to recognize particu-
lar activities, and this within large datasets that tend to in-
clude a massive amount of background data, generally hold-
ing weeks of activity data at a time. The next section will re-
view some of the literature on activity recognition methods
that tackle similar problems, as well as technically related
approaches in wearable sensing, data mining, and classifica-
tion, and situate the proposed approach among peer research.
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RELATED WORK
Activity recognition has been suggested as a promising tool
before for bipolar studies. Both [23] and [27] have pointed
out that the use of automatically monitoring activities would
be a useful tool to support the diagnosis of bipolar disorder
and detect onsets of depression and mania. In particular the
so called Hamilton Depression Scale (HAMD) and Bech-
Rafaelsen Mania scale (BRMS) [2] tools contain elements
where physical activities are of considerable interest. How-
ever, to our knowledge no research has thus far focused on
implementing an activity recording method that can practi-
cally be deployed on a patient’s wrist for a week and allows
almost-instant analysis at the psychiatrist’s office.

A significant amount of work in the context of activity recog-
nition has focused on automatic feature selection for inertial
data and using strong classifiers upon these features to detect
activities. Common candidates that have proven worthwhile
in previous studies (e.g., [9], [13]) have found basic statis-
tics, in particular mean and variance, and frequency-based
features (FFT and Cepstral Coefficients, spectral entropy and
energy) over a sliding window to be distinctive features to
characterize. Lester et al. [13] use in a combined discrim-
inative-generative classification approach the AdaBoost al-
gorithm to automatically select the best of these features and
to learn an ensemble of static classifiers to recognize differ-
ent activities. Strong classifiers that have proved valuable
in activity recognition include Naı̈ve Bayes, Bayesian Net-
works, Hidden Markov Models (HMMs) or Support Vector
Machines (SVMs) [1, 3, 8, 13, 15, 17, 18, 19, 20, 21].

The use of motif discovery has been suggested as an alter-
native approach in activity recognition that is especially use-
ful when a fully supervised method is not feasible, or when
short characteristic gestures need to be spotted that are hard
to annotate individually by the system’s users. Minnen et
al. [16] use motifs to automatically discover gym work-out
gestures in inertial data recorded form body-worn sensors,
by mapping the sensor data to symbols and using a suffix
tree to search efficiently through the resulting large symbolic
strings. Similarly, Hamid et al. [7] analyze activities in an in-
strumented kitchen, and [26] uses motif discovery to detect
activities such as walking and falling without supervision.
We use motif discovery primarily because (1) the annota-
tions that describe which activity was done when are pro-
vided by the system’s wearer using self-recall and are thus
only approximate, (2) we assume that physical leisure activ-
ities can typically be characterized by occurrences of certain
short gestures, and (3) because it is an especially fast method
that allows parsing of large data sets at once.

Motif discovery techniques generally rely on symbolic ab-
straction of the original raw sensor data to obtain an espe-
cially fast detection method using the suffix tree representa-
tion. In [22], the symbolic representation of inertial data is
used to facilitate efficient matching of motion patterns. The
inertial trajectory in space is approximated after which it is
mapped to a character based on the minimum angular dis-
tance to the 3 axes that are represented by a small alpha-
bet of 6 symbols, thus resulting in a motion string. The

Figure 2. Our custom-made sensor platform, designed to be worn and
used as a wrist watch, is light-weight enough to be worn for recordings
of up to 2 weeks. Left: board with controller, accelerometer, micro-SD
storage, and USB connector for data access and charging the battery.

approach of [16] uses discrete mapping based on a Gaus-
sian distribution fit on the data, whereas others use proba-
bilistic approaches such as [4], or approximate the sensor
signal’s time-series first by piecewise constant segments of
fixed length [14], which are then mapped to a set of discrete
symbols. Our approach uses similarly an approximation of
the inertial time-series, but uses for the mapping the subse-
quent segments’ slopes to capture the essence of these short
gestures’ patterns in accelerometer data from the wrist.

The importance of long-term recording of inertial data, in an
unobtrusive manner, has been stressed in several key pub-
lications on activity recognition (most notably [5, 10]). Al-
though data sets have been recorded over similar time frames
as in this paper, none so far have recorded day and night for
several days consecutively. Actigraphy on the other hand
does log for extended periods of time, but abstracts the iner-
tial data on-board the sensor and does not retain the original
time series at the resolution of this paper’s (100Hz).

DATA LOGGING PROTOTYPE
Deploying sensors that are lightweight and wearable is one
of the hard challenges in the creation of robust recognition
systems, as has been identified in previous research such as
the Mobile Sensing Platform [5]. Since there are no cur-
rent off-the-shelf platforms that allow continuous logging of
high-resolution accelerometer data, the experiments in this
paper have been recorded from custom-built sensor units that
measure and store regularly-timestamped 3D acceleration on
2 Gigabytes of local flash storage (Figure 2). This persistent
memory is required since the recording is done by sampling
3D acceleration data at 100Hz. In addition to the accelerom-
eter, light and temperature sensors are also on board.

While recording, the sensor regularly acquires 33 equidistant
(10 ms) samples at a time from an ADXL345 accelerom-
eter’s first-in first-out (FIFO) buffer and logs these using
run-length encoding (RLE) on the on-board micro-SD card.
Regular time stamps are produced by a precise real-time
clock (RTC) unit embedded in the PIC18F46j50 microcon-
troller, allowing detailed verification of separate annotations
taken by the subjects and individual sensor readings. Be-
tween FIFO reads, only the accelerometer is active on the
board, with the micro controller in sleep mode preserving
the charge of its miniature 180mA Li-Polymer battery.
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Figure 3. The raw 3D 100 Hz inertial data (top plot) are transformed by a piecewise linear approximation algorithm into segments (bottom plot) that
preserve the shape of the signal to facilitate storage and analysis. The segments are subsequently abstracted in discrete symbols (bottom row) to allow
fast discovery and matching of motifs. Occurrences for three motifs are highlighted by colored boxes; Note that they can overlap and vary in length.

The entire sensor draws 480uA on average while logging.
Non-stop logging of 100Hz inertial data should thus last for
15.6 days. From our own experiments, we have observed
that the battery is usually drained after 14.5 days, which still
allows 2-weeks of uninterrupted logging. To meet the re-
quirements of long-term 24/7 deployment, the unit is packed
in a custom shock-proof case and provided with an anti-
allergic textile wrist strap. For more inconspicuous deploy-
ments, as advised by our collaborators from psychiatry, an
OLED display has been added to display the current time
from the real-time clock. The display is by default turned off
and activated by double-tapping the watch, driven by an on-
accelerometer function interrupt. With the OLED attached,
deployments generally last one to two days less.

DENSE MOTIF DISCOVERY
This section gives an overview of the search and selection
procedure for motifs from raw inertial data, and motivates
the use of dense motifs. A set of early abstraction steps of the
accelerometer data, together with a search-optimized data
structure called suffix tree, guarantee that searching through
weeks of data becomes feasible on standard computing hard-
ware, and that classification can be done almost simultane-
ously with the downloading of the prototype’s data.

Method Overview
Motif discovery refers to the search for recurring sequences
or patterns within a data stream. For this to be applicable in
real-world scenarios, previous research has identified several
techniques to represent the original data, which often tend to
be noisy and hard to match exactly, in a discrete symbolic
string. This paper’s approach implements a discrete map-
ping that applies a two-step abstraction process while aiming
to characterize patterns in the data (i.e., potential activity-
specific gestures) by the shape of the time series.

Figure 3 illustrates how the proposed method transforms in-
ertial data to a string that facilitates the finding of recurring
motifs: The original data consists of 3D accelerometer sam-
ples taken in equidistant 10 ms steps. Sets of linear segments
are created from these, using an online approximation algo-
rithm that minimizes the residual error between original data
and segments. The segments are discretized into symbols us-

ing the slopes of connected linear segments. Using a suffix
tree representation of the target activity’s training data, a set
of motifs is found using adaptive length thresholds. Motifs
that also have occurrences in the training’s background data,
i.e., the vast set of data that does not belong to the activity,
are withheld. As a dense set of motifs is trained for, classi-
fication is done by searching new data for time windows in
which motifs from one particular activity are frequently oc-
curring. This is implemented with a bag-of-words classifier
which uses the detected motif occurrences as evidence. To
perform the described motif discovery efficiently, the origi-
nal sensor data needs to be abstracted: The next section will
discuss a linear segmentation step.

Approximation from Raw Data
The first abstraction step is crucial from a practical and ef-
ficiency point of view: Raw sensor data is sampled at a rel-
atively high frequency (100 Hz) to capture the essence of
the gestures and typical motions performed by the sensor’s
wearer, but this also means that analysis of larger data sets
quickly becomes challenging. Even with fast and lossless
compression techniques such as run-length encoding, an en-
tire day worth of data typically contains millions of 3D ac-
celeration samples.

We argue that for motif discovery in inertial data, primarily
the shape of the acceleration time series is important to re-
tain. The applied technique to reduce the amount of data on
the one hand and to preserve the shape of the signal on the
other, belongs to the Piecewise Linear Approximation (PLA)
family of abstraction algorithms. We used in our algorithm
a modification of the original Sliding Window and Bottom-
Up (SWAB) algorithm [11] that has been verified to perform
well on body-worn accelerometer data [12].

The transformation from raw data to linear segments consists
of two steps, the approximation of data on a sliding buffer
window and filling the buffer with new sensor samples. The
main approximation step is carried out by a Bottom-Up brute-
force algorithm that produces the linear segments by merg-
ing cheapest adjacent segments until a preset threshold is
reached. The leftmost segment is output as a result, and the
buffer is filled with new data, whereby the modified version
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Figure 4. Mapping from linear segments to symbols: The slope range
is divided into bins for a given number of separation points which are
computed based on the training data segments’ slopes histogram. The
segments’ corresponding bin numbers are then used as indices for the
symbols matrix. Sliding through the segmented time series while con-
sidering two neighboring segments will thus result in a symbolic string.

considers slope sign changes, and thus peaks in the signal, in
incoming raw data. More details and a study on its efficiency
can be found in [11]. The two plots in Figure 3 show a 10-
second accelerometer time series and the resulting piecewise
linear approximation produced by the modified SWAB algo-
rithm. The approximation was performed per acceleration
axis for implementation reasons, although it is also possible
to approximate multidimensional time series.

Mapping to Discrete Symbols
After abstracting the raw acceleration data to linear segments,
a discretization step is used to obtain a symbolic string rep-
resentation of the original time series. This abstraction step
is first and foremost required to enable fast discovery of mo-
tifs, but also for finding matches between motifs.

First, we evaluated two degrees of freedom per segment,
considering the length and the slope, and mapping the result-
ing segments onto symbols in a similar way as was done with
the SAX approach by Lin et al. in [14]. Our approach also
discretizes the feature value space based on the distribution
of the values. The main difference to SAX is that the first
abstraction step produces constant segments of fixed length,
thus having only one degree of freedom, while SWAB pro-
duces linear segments with individual slope and length. With
this approach, our initial test showed that very long segments
became over-represented in the motif discovery. This is due
to inherent properties of accelerometer data, with long seg-
ments with a slope close to zero being over-represented, par-
ticularly during the night time and sedentary tasks, where
little or no changes are present in the signal.

Being interested in mainly short and characteristic gestures,
focus went to the slopes of two neighboring segments, where-
by we use the angular representation of the slope defined as
θ = arctan(m). To achieve discretization, the slope range
from −90 to 90 degrees was divided into bins, whereby the
borders (quantiles) are selected on the basis of representative
data in a histogram during the training phase. To avoid over-
representation of non-motion motifs, segments with a slope
close or equal to zero were not considered. The rest, where
we do not assume Gaussian distribution, is used to compute
the quantiles for a given number of bins (which was found
to produce the best results when set to 5).

9:p1:mississippi$
2:i 3:s

3:ssi 9:ppi$

6:ssippi$
9:ppi$

10:pi$ 11:i$4:si 5:i

6:ssippi$
9:ppi$

6:ssippi$
9:ppi$

12:$

12:$

1

2 5

8 11

12

3 6 4 7

9 10

Figure 5. Generalized suffix tree for the string mississippi created
by adding a unique terminator character $ to the original string. Suffix
links are indicated with dotted edges, edge labels give the first occur-
rence position in the string of subsequent suffixes.

Mapping the linear segments to discrete symbols is realized
by sliding through the time series, considering the slopes of
two neighboring segments at a time, and converting them
to one character (cf. Figure 4) using a 2 dimensional ma-
trix. Converting an approximated time series using this ap-
proach will result in a long symbolic string, as shown in Fig-
ure 3, that can be parsed for motifs with the help of suffix
trees. The advantages of this approach are two-fold: First,
the length of a linear segment is not constrained to a fixed
value, as it is the case with the SAX approach, and common
errors where symbols afterwards would need to be merged
are avoided. Secondly, by not taking the length of a segment
into account when mapping the segments to symbols, more
importance is placed on patterns in the data where strong
peak sequences occur. With a symbolic representation of the
time series now completed, the next section will discuss the
method for the finding of motifs.

Extracting Motifs by means of Suffix Trees
Having mapped the raw acceleration data to a symbol se-
quence, motif discovery can now be done by finding sub-
strings that occur multiple times in the target class. This
is above all an efficiency problem: searching for all occur-
rences of every motif in a long string in an exhaustive fashion
will result in a slow discovery process that is not scalable, as
large sets of motifs are expected to be present.

To significantly speed up this search procedure of motifs, a
technique is applied that transforms the string from a long
array of symbols to a tree representation. This data struc-
ture, called suffix tree, generally requires more storage space
than the string array, but in return allows searching for all
substrings up to a certain length in linear time. Furthermore,
suffix trees can be constructed in linear time using an algo-
rithm by Ukkonen [25]. The motifs are found by checking
the number of leaves for all suffixes up to a certain depth in
the tree, which then corresponds to the number of the sub-
string’s occurrences in the data.

Figure 5 depicts the generalized suffix tree for the string
mississippi. The generalized suffix tree is produced by
adding a unique terminating character (such as commonly
used $ or #) to the original string. With a generalized suffix
tree created, this structure can be used for a multitude of dif-
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ferent applications. The most common application is search-
ing for query substring occurrences, for example, those of
the substring issi in the example above: First, verifying
whether the query is present in the original string at all can
be answered by traversing the edges 2:i and 3:ssi of the
tree from its root. The fact that this path can be traversed,
means that the query is present in the original string. In
this case, the places and number of occurrences are found
by counting the leaf nodes in the sub-tree and looking at the
leaf node indices: 2 occurrences with positions 2 and 5 are
found after traversing the edges 6:ssippi$ and 9:ppi$.

Suffix trees are used for the discovery of motifs that are
likely descriptors for a target activity class. Motifs are found
by searching the suffix tree to a certain depth, and accumu-
lating those motifs that occur at least two times and have
a minimum length (a trade-off evaluation on our data set
showed a minimum length of 5 to still produce sufficient mo-
tifs for the bag-of-words classifier). The most discriminant
motifs are then selected for classification, from all discov-
ered ones by removing those that appear frequently in the
background data provided during the training. After thus
finding a set of motifs that tend to represent a particular ac-
tivity class, these can be used as weak detectors in classifi-
cation by evaluating the density of their occurrences.

Bag-of-Words Classification
Using the most discriminant motifs during a training phase
as described in the previous paragraphs, classification is per-
formed by local evidence of all motifs that support an activ-
ity. This straightforward bag-of-words classifier uses a slid-
ing time window over the time series and accumulates local
evidence by counting occurrences of motifs. As the activi-
ties tend to last at least 30 minutes and up to an hour and a
half, a window size of 10 minutes was chosen.

EVALUATION
The entire approach as described in the previous section is
tested in this section under conditions from the motivation
scenario of psychiatric monitoring. After presenting the wrist-
worn sensor prototype, as well as the test subjects and the
chosen activities, a comparison of the proposed approach is
given with two common activity recognition techniques that
have been chosen as a benchmark. Finally, we are discussing
the performance results of our and the other methods.

Participants and Target Activities
The data used in the following experiment comes from a
group of volunteers who have no known psychiatric disor-
ders and for whom a leisure activity was known before the
recording phase (a key leisure activity, regularly performed
as it would be chosen by a psychiatrist), which they would do
once each day, for a full working week. For most, this turned
out to be a leisure activity, for some a daily activity that was
part of their regular schedule. Table 1 gives an overview of
all participants, specifying their gender, age and their per-
sonally chosen target activity which will be used for testing
detection accuracy. Additionally, the amount of raw sensor
data as well as the total number of segments used in the eval-
uation are given. Here, the first data reduction step (modified

Linear Approximation

Symbolic Representation

Motifs

Bag of Words

Classification

SVMSVM

Mean&Variance FFT features

Raw Sensor Data

Figure 6. Overview of the detection evaluation: The dense motif classi-
fier (red) is compared with two strong classifiers that rely on mean and
variance features (blue) and FFT-derived features (green) respectively.

Table 1. The list of participants, specifying their gender, age, and the
leisure activity they performed once a day, along with the number of
recorded data samples and the number of linear segments produced
from raw data by the segmentation process.

subject gender age target activity 3D samples segments

1 female 30 zumba 26 927 159 2 011 826
2 male 35 cycling 42 841 897 2 259 414
3 male 30 badminton 44 244 417 2 758 001
4 female 27 guitar 43 230 164 2 825 311
5 male 28 gym 34 822 499 2 480 707
6 female 26 flamenco 43 101 537 2 980 562

SWAB algorithm executed with approximation threshold of
10 and buffer size of 80) is also shown to have a significant
effect, resulting in more than thirteen times less data points.

The data set from each participant was split into separate
blocks of about a full day (24 hours±50 minutes) each to fa-
cilitate 5-fold cross validation. Each activity instance lasted
approximately one hour. The target activity thus holds ±5%
of the entire fold, with the rest being other daily activities.

Benchmarking the Performance
To evaluate the classification performance of our approach, a
comparison to two standard activity recognition techniques
was done. For the latter, several classifiers were identified,
with the Support Vector Machine (SVM) as the best per-
forming, as well as different feature sets to abstract the raw
data. Due to their coverage in the activity recognition com-
munity, e.g. in [9] or [29], mean and variance were identified
as one combination. An additional set of features based on
Fast Fourier Transform (FFT) coefficients were chosen as
another: the 16 FFT features that have been suggested and
evaluated in [29] consist of the absolute, real valued FFT
coefficients grouped into 4 logarithmic bands, 10 Cepstral
Coefficients, the spectral entropy and energy of the signal.

One imbalance in this comparison is illustrated in Figure 6:
Since the dense motif approach aims at extracting character-
istic motion patterns for target activities from the symbolic
representation of the original sensor data, more resources are
spent on pre-processing the sensor data, and less on the clas-
sification. Although Figure 6 details just the required steps,
and not their time complexity, it is clear that the approaches
differ significantly in how the processing steps are weighted.
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SVM with mean and variance

SVM with FFT features

target activity →

Figure 8. One day of the experiment data in which one of the participants cycled for about one hour. The topmost plot shows the original 3D sensor
data, along with motif occurrences highlighted by black markers. The three plots below give the corresponding score plots produced by the different
classification approaches during the evaluation: The first plot shows aggregated motif occurrences, while the two plots below show the smoothened
SVM classification for mean and variance and FFT-based features respectively, with all three approaches using the same sliding window length. After
combining all such results for all participants’ data, the precision and recall figures show overall performance of the three approaches in Figure 9.
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Figure 7. Mean execution times for training and detecting on 24 hours
with the three approaches, with upper and lower quartiles (red lines):
The dense motif method is especially faster in training, with segmen-
tation and discovery of motif occurrences taking up most of the time.
For the SVM-based approaches, most of the time is spent on calculating
the features on the sliding window, with the classification done in a few
seconds. Used parameters are the same as in the classification analysis.

Figure 7 shows the average times gathered during the 5-
fold cross validations with our dense motifs approach for
the best-performing set of parameters (as also shown in later
evaluation plots, approximation threshold and buffer size:
10/80; symbols mapping to 5 bins). For one day worth of
data the two abstraction steps (producing segments and con-
verting them to symbols) require about 10 seconds. Depend-
ing on the activity, the time required for extracting the char-
acteristic motifs from the training part of the dataset ranges
from 3 up to 12 seconds. Obtaining motif occurrences for the
classification on the fifth part of the dataset and computing

the score needs from 18 up to 46 seconds, using a standard
laptop setup and with the source code written in Python.

Both mean and variance, as well as the FFT-based features,
are computed on a sliding window over the raw data, with
window sizes varying from 1 to 30 seconds. For classifi-
cation, the svmtrain and svmclassify methods from
the Matlab Bioinformatics Toolbox were used. The perfor-
mance of the features with the SVM classifier was evaluated
by the same 5-fold cross validation as for the dense motifs
approach. The detections produced by the SVM classifier
are smoothened by a sliding window of 10 minutes to fil-
ter out outlier false detections, resulting in a score. At this
stage, by evaluating the obtained classification versus the the
ground truth annotations, precision and recall are computed
for our dense motifs as well as for the features with SVM
approaches. Figure 8 shows an example illustrating how the
different classification techniques performed on the third day
of the cycling dataset during the evaluation phase. The score
plots below the raw data show the aggregated motif occur-
rences for the dense motif method, and the normalized re-
sults of the windowed filter after SVM.

Experiment Results and Discussion
This section presents the experiment results for the leave-
one-day-out 5-fold cross validations: For every activity one
day is left out for testing purposes, while training (obtaining
the motifs that tend to represent the activity) on the other
four days. Since the evaluation considered a wide range
of possible parameter combinations (abstraction thresholds,
buffer lengths, window sizes, etc.), only a few prolific fig-
ures are shown to discuss the experiment results.

7



0.0 0.2 0.4 0.6 0.8 1.0
1 - recall

0.0

0.2

0.4

0.6

0.8

1.0
pr

ec
is

io
n

badminton

0.0 0.2 0.4 0.6 0.8 1.0
1 - recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

cycling

0.0 0.2 0.4 0.6 0.8 1.0
1 - recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

flamenco

0.0 0.2 0.4 0.6 0.8 1.0
1 - recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

guitar

0.0 0.2 0.4 0.6 0.8 1.0
1 - recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

gym

0.0 0.2 0.4 0.6 0.8 1.0
1 - recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

zumba

MeanVar + SVM
FFT features + SVM
Random Classifier
Motifs + Bag of Words

Figure 9. Precision and recall performance results on the six different activities obtained through the leave-one-day-out 5-fold cross validation,
averaged over the number of folds. The dense motif approach outperforms the SVM classifier trained with mean & variance or FFT features on five
out of six activities, while performing significantly worse to the FFT features trained SVM classifier on the gym dataset (fifth plot from the top-left).

Figure 9 shows a comparison of the best performing average
precision and recall figures of our approach and the SVM
classifier that has been trained with mean and variance, and
the FFT features. Additionally, the performance of a random
’guessing’ classifier is depicted for completeness. Precision
and recall are averaged over the number of folds, while for
each activity and classification method the choice of param-
eters with the best classification performance is chosen.

The SVM classifier trained with mean and variance features
performs well on activities that involve a lot more motion,
with especially the variance of the signal playing a signif-
icant role, as can be seen by comparing the activities bad-
minton or zumba with gym, cycling or flamenco. While
the first two activities exhibit very high accelerations due
to sharp hand motions, the three latter activities lack such
high accelerations. The dense motif approach is in many
cases the best-performing, in some cases even significantly.
To illustrate its strengths, the performance on the badminton
data is shown in Figure 10, zooming in on a short time span
of 50 seconds with motifs occurrences matching the under-
lying characteristic motion patterns. Motifs here often over-
lap, with their dense occurrences making the detection of the
activity more reliable.

When investigating the impact of the abstraction, we noticed
that the parameters that control the first abstraction step for

Figure 10. Dense motifs performance on one fold of the badminton
data over one day (upper plot, with badminton activity marked in red),
and a 50-seconds fraction thereof with motif occurrences (lower plot).
Characteristic motions such as forehand, backhand, smashes, are often
marked by motifs, while areas in between tend to be left out.

the badminton and zumba data have almost no impact on
the classification performance. This can be explained by the
importance of high acceleration peaks in the signal that are
preserved even with a coarse grained approximation. The
approximation threshold plays a more important role for the
flamenco or cycling datasets, or generally for activities with-
out extreme accelerations where coarse grained approxima-
tion results in a worsened classification. With the best per-
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Figure 11. Example of dense motifs on a day with the flamenco activity
(highlighted in red). Note the drops in the score for the target class.

forming parameters, the dense motif approach reaches over
95% in precision and recall on the badminton, zumba or cy-
cling datasets. For the other datasets, namely flamenco, gui-
tar and gym, the dense motifs approach needs a more de-
tailed discussion.

The flamenco dataset (see also Figure 11) shows a wide per-
formance difference between the chosen approaches. While
mean and variance features give average results, FFT fea-
tures perform surprisingly poorly. This could be explained
by the fact that flamenco dancing is an activity with lots of
irregular motions that are often complex. The dense motifs
approach benefits the most from the characteristically short
motions, which are not equally distributed over the whole
activity, hence the slight drop in the recall. The equal error
rate reaches 73% for the flamenco data set.

The dense motifs approach on the gym activity data was sur-
prisingly low. The exercises consisted of different weightlift-
ing workouts, with gestures being much slower compared to
the other activities in this evaluation. Figure 12 shows the
dense motif performance on 24 hours and a sub-sequence
lasting for about 2 minutes. Inspection of different folds dur-
ing the evaluation and comparison to other activities shows
that the initial number of motifs is not very high in the first
place, and is heavily reduced as motifs that appear in the
background data are discarded (equal error rate of 60%).
The slow motions are also the reason why the mean & vari-
ance trained SVM classifier fails at classifying the activity
correctly. The FFT-based features, on the other hand, com-
puted on a window of 5 seconds, were able to profit from the
frequency domain characteristics of the gym exercise activ-
ity: The SVM classifier trained with these features performs
considerably good reaching over 80% in equal error rate.

The playing guitar data turned out to be captured well with
motifs, with the approach gaining a significant advantage
over a classifier on the traditional features. While different
ways to play were observed, including hitting or plucking
the strings depending on musical genre, the dense motif ap-
proach still detected much of the activity, reaching 87% in
equal error rate. Figure 13 illustrates one day, where the par-
ticipant took a short break in activity. Such reduced perfor-
mances due to the different ways to play the guitar, as well
as breaks of varying durations, might be of particular inter-
est to the psychiatric analysis and might provide additional
hints regarding their patients’ mood. Implementing detec-
tion for such events requires further investigations though
and are left as future work.

Figure 12. Dense motifs for a day of the gym data (upper plot, with gym
activity marked in red in the middle plot) and a sub-sequence lasting 2
minutes (lower plot, with motifs marked in red). Two of the exercises
can be recognized by periodically signals in the lower plot.

Figure 13. Dense motifs on one day with playing guitar for an hour:
the gap in the middle of the activity (see bottom plot) was found to be
due to a short bathroom break of the participant.

CONCLUSIONS AND FUTURE WORK
This paper presented a practical activity detection system to
spot leisure activities in long-term datasets, that is based on
finding parts in the data that contain frequent matches with
a set of motifs. These dense motifs are discovered in ex-
emplar training data by finding the most descriptive motifs
for the activity against the large amount of background data.
The approach has been designed for continuous deployment
in psychiatry monitoring, and was evaluated on a data set
with similar constraints, containing more than a month of
data taken from a custom-built wrist-worn sensor unit that
records 3D accelerometer data at 100Hz.

Experiments show that the approach is able to detect many
physical activities, on par with standard approaches, reach-
ing an equal error rate performance of 95% for 3 of the 6
activities, and only being significantly outperformed on one.
It was demonstrated to be able to work on large and long-
term sets of inertial data and can, unlike many traditional ap-
proaches, be expected to be scalable for weeks or months of
such data. A remaining weakness identified is the method’s
reliance on short gestures, such that slower movements (such
as weight lifting exercises) are not always picked as motifs.

While this work aimed at efficiency and therefore focused
on extracting characteristic features, future work is under-
way to replace the bag-of-words classifier by more powerful
models. The data set and code used in this paper are publicly
available2, to encourage reproduction of these results.

2at http://www.ess.tu-darmstadt.de, or by contacting the first author
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and drinking arm gestures using inertial body-worn
sensors. In ISWC ’05, pages 160–163. IEEE, 2005.

2. P. Bech, T. Bolwig, P. Kramp, and O. Rafaelsen. The
bech-rafaelsen mania scale and the hamilton depression
scale. Acta Psych. Scand., 59(4):420–430, 1979.

3. K.-H. Chang, M. Chen, and J. Canny. Tracking
free-weight exercises. In UbiComp ’07, pages 19–37,
Berlin, Heidelberg, 2007. Springer.

4. B. Chiu, E. Keogh, and S. Lonardi. Probabilistic
discovery of time series motifs. In KDD ’03, pages
493–498, New York, NY, USA, 2003. ACM.

5. T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel,
B. Harrison, et al. The mobile sensing platform: An
embedded activity recognition system. IEEE Pervasive
Computing, 7:32–41, 2008.

6. P. Corkum, R. Tannock, H. Moldofsky,
S. Hogg-Johnson, and T. Humphries. Actigraphy and
parental ratings of sleep in children with adhd. Sleep,
24(3):303, 2001.

7. R. Hamid, S. Maddi, A. Bobick, and M. Essa. Structure
from statistics - unsupervised activity analysis using
suffix trees. In ICCV ’07., pages 1–8. IEEE, 2007.

8. T. Holleczek, J. Schoch, B. Arnrich, and G. Tröster.
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