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ABSTRACT
Wet Laboratories are highly dynamic, shared environments
full of tubes, racks, compounds, and dedicated machinery.
The recording of experiments, despite the fact that sev-
eral ubiquitous computing systems have been suggested in
the past decades, still relies predominantly on hand-written
notes. Similarly, the information retrieval capabilities in-
side a laboratory are limited to traditional computing inter-
faces, which due to safety regulations are sometimes not us-
able at all. In this paper, Google Glass is combined with a
wrist-worn gesture sensor to support Wetlab experimenters.
Taking "in-situ" documentation while an experiment is per-
formed, as well as contextualizing the protocol at hand can
be implemented on top of the proposed system. After an
analysis of current practices and needs through a series of
explorative deployments in wet labs, we motivate the need
for a wearable hands-free system, and introduce our specific
design to guide experimenters. Finally, using a study with
22 participants evaluating the system on a benchmark DNA
extraction experiment, we explore the use of gesture recog-
nition for enabling the system to track where the user might
be in the experiment.

Author Keywords
Life Science; Hands-free Documentation; Google Glass;
Wrist-Worn Inertial Sensors; Wet Lab; Activity Recognition

ACM Classification Keywords
H.5.m. [Information Interfaces and Presentation (e.g. HCI)]:
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INTRODUCTION
Much of the experimental research in life sciences is per-
formed in wet labs. These laboratories are highly dynamic
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Figure 1. A hands-free wearable system combines Google’s Glass (top-
left) with a wrist-worn accelerometer logger (lower-right) to allow cap-
turing and reviewing of experiments in a wet laboratory environment.

in nature and contain benches packed with equipment such
as tubes, racks, compounds, specialized machinery and com-
puters. Chemicals, organisms, liquids and other agents are
experimented on. The experiments performed in such labs
can take a few minutes up to several days, and need to
suspended often for organism to grow, or until a sufficient
amount of agents are incubated. To provide valid results, ex-
periments are required to be reproducible, which is why ex-
perimenters rely on checklist-like documentation notes taken
during or prior to their procedures. Off-the-shelf Kits, which
implement common procedures, provide detailed usage in-
structions. Other details of procedures are either established
from scratch, adapted from similar experiments, incremen-
tally refined as experiments get repeated or executed as close
as possible in an experiment reproduction cycle. The ob-
servations of the scientist and details of the procedure are
recorded in so called protocols.

Maintaining these lab protocols often ends up as a heavy bur-
den for the experimenter, resulting subsequently in protocols
that are routinely written "offline", after the experiment has
been performed. Individual steps and details are mostly re-
constructed from memory, if written down at all. One rea-
son for this, is the large effort in putting down the experi-
mentation equipment (e.g., pipettes, flasks, gloves, or con-
tainers) and moving to a different bench to take notes or re-
trieve information from a PC. Another more profound reason
is the risk of contamination - laboratories are classified into
four bio-safety levels with increasing precautions to contain
harmful agents. Easily contaminated and absorbent materials
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Figure 2. Examples of the user interface as presented to the participants while performing the study. Information cards are switched backwards and
forwards, the current step can be marked as complete using speech commands. The second and fourth images are examples of checked /marked steps.

like paper, lab notebooks, cameras and other utilities need to
be sterilisable. Wrapping these into easily de-contaminated
materials (e.g. shrink-wrapping), not allowing them to be
taken out of the laboratory or requiring them to be used only
with protective garments are common routines. Even when
working with non-harmful agents, contamination can be an
issue when materials are shared or compounds transferred
between experiments via contaminated tools. Such contami-
nations can easily invalidate experimental results. Therefore,
the taken safety pre-cautions serve a double purpose: (1) to
protect the experimenter from the organism and (2) the or-
ganism under study from unwanted contaminations from the
outside. These neccesary pre-cautions however hinder the
on-the-spot documentation retrieval and generation abilities
of scientists in the wet lab.

We follow in this paper a similar approach to that of a set of
previous studies from ubiquitous computing research, which
posit that assisting the experimenters with an interactive and
augmented lab environment has strong potential to increase
their efficiency, to decrease the probability of errors, and to
allow for a comfortable recording of experimental parame-
ters in biology or chemistry experiments. We present to this
end a wearable system providing features such as a head-up
display, point-of-view video recordings, voice recognition
and hand gesture recognition which allows inconspicuous in-
teraction with the laboratory. It also provides the opportunity
to assist individual experimenters by equipping themselves
rather than changing the environment for all its users.

More specifically, we present in this paper a fully wear-
able system consisting of Google Glass and a wrist-worn
accelerometer, to aid in documenting the experiment steps
in a wet laboratory environment. Our core assumption is
that the usefulness of continuous streams of video, audio or
environmental sensor data is increased, when its searchable
by human-understandable cues or can be retrieved automat-
ically by current context. In this paper we ask wether wrist
accelerations can provide such cues. The following three
contributions are made:

• A case study of a microbiology laboratory is introduced,
which studies the challenges a wearable system needs to
overcome, via a series of observations of point-of-view
video recordings in different lab environments.

• We present a hands-free system that enables wet lab scien-
tists to record their work, or look up, navigate, and mark
steps of an existing protocols through a head up display.

• The feasibility of detecting common gestures with 22
novice users from wrist acceleration readings in a con-
trolled laboratory study (DNA extraction) is shown. Fur-

thermore reconstructing large parts of the experimental
protocol based on key getures (such as mixing, stirring,
or pouring) by a Hidden Markov Model is demonstrated.

In the remainder of this paper, the system with its individual
components is described and a deployment of the system for
capturing experiments in several types of wet laboratories is
discussed. We then provide a study on what is achievable
with gesture recognition algorithms alone as a capturing ap-
proach, followed by a discussion of the results with relation
to future directions that this approach can take. First, we
compare our wearable system to other systems for wet labo-
ratories that have been proposed in the past years, and more
generally to wearable assistant systems for other domains.

RELATED WORK
The notebook, in which experimenters record their thoughts,
results, and plans serves as one of the core parts during a life
scientists’ research. As such it has been the target of many
research efforts, as well as targeted by commercial endeav-
ours. Subsequently, electronic laboratory notebooks (ELNs)
are often sought to replace or enhance their pen and pa-
per counterparts. Even when offering clear advantages, like
searchability of records, direct addition of multimedia, eased
collaboration [1–3], edit-ability [4] and capturing of instru-
ment measurements [5], their usage is still limited. Since
these notebooks are used for tracing and claiming inventions,
as well as checking conformance to established protocols, li-
ability and legal issues arise with their usage. For electronic
records, only a limited legal framework is available [6, 7],
limiting possible usage scenarios only to some laboratories.

Pen and paper solutions are also preferred because of the
flexibility and freedom over visual structure they provide [8].
This has lead to several efforts which try to combine physical
and electronic notes. The a-book [9] combines a tablet and
PDA to capture paper notebook writing. Based on a fiducial
marker, entries could be augmented with additional media
and easily shared. A system to support biologists in the field
was presented in the ButterflyNet [10] project. Handwritten
notes are captured (with an Anoto pen) and combined with
visual and audio information for later access. This allowed
the biologist to capture information in the field, and augment
it with other sensory clues - a task that previously had to be
done manually. The Prism [1] project reports on a study of
biologists’ work practices and presents a hybrid system us-
ing hand-written notes as well as digital content to capture,
visualise and interact with activity streams in the laboratory.
Forcing too much structure has been found to be too inflexi-
ble. An open design based on linking and searching informa-
tion bits was adopted, similar to the MyLifeBits design [11]
but specific to the experimenters workflow.
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Other type of systems are focussed on providing a more
formal specification of single experimental workflows, on
which user interfaces are built. These systems also aug-
ment the lab itself to provide these user interfaces. The Lab-
Scape [12] project was an early investigation in a ubiquitous
computing platform to help scientists and students to access
and capture information in the laboratory. It uses interactive
flowchart diagrams to visualize and annotate ongoing proce-
dures that are accessed via a touch-tablet, barcode scanner,
RFID tags [13], numeric keypad and wireless keyboard.

During the Combechem project the idea of a digitized
flowchart was enhanced to a Semantic Smart Labora-
tory [14], a system for supporting chemistry experiments fo-
cusing on providing a flexible ontology for describing ex-
periments and storing them for later retrieval. A formal def-
inition of chemical experiments is presented as part of the
Labtrove project [15] as well. The eLabBench [16] and Bi-
otisch [17] takes the integration in the laboratory further by
replacing the traditional workbench with a tabletop system
that presents information on the bench’s surface, also allow-
ing interaction, sensing of augmented objects (e.g, racks of
test tubes) and taking pictures of the whole setup with an
overhead camera. The gathered digital information is stored
in a wiki-like notebook for later retrieval.

In contrast, the system that is proposed in this paper focuses
on the largely unexplored area of supporting and augmenting
such laboratory tasks by means of a lightweight, exclusively
wearable system. The setup requires little to no interference
with the laboratory environment and its inventory, and offers
hands-free operation. We argue that this approach of aug-
menting the researchers instead of the laboratory, has many
advantages, not in the least the fact that every user in exist-
ing laboratories can still opt to keep on documenting their
experiments with the traditional methods alone [18].

As has been shown by some of the above research, a formal
workflow tends to be valued by experimenters and can be
exploited as a structure for information capture as well. We
investigate in particular whether a wrist-worn accelerometer
unit can be used to capture such pre-defined structure, for
instance in order to index associated video and audio record-
ings. This concept of automated journal building has been
introduced previously, where activities were extracted in an
unsupervised fashion [19]. In the case of the life science lab-
oratory, these workflows tend to be frequently predefined,
and actions can be extracted from available textual descrip-
tions, leading to a semi-supervised approach.

The concepts of wearable workflow monitoring, documen-
tation access, and assistance have been thoroughly explored
by research in other domains [20], especially in maintenance
[21], manufacturing [22] and inspection tasks [23]. Key
components of the envisioned system in this paper were also
inspired by the Remembrance Agent (Remem) project at the
MIT more than a decade ago. The proposed system is how-
ever focused on the specific scenario of documenting and as-
sisting wet laboratory tasks, where contextual knowledge is
well-defined, and tasks and information have additional con-
straints that the lab environment poses.

Figure 3. Four selected steps during the mock-up DNA Extraction
study. The participants are wearing a wrist accelerometer and Google’s
Glass. The latter guides the participant through the experiment.

SYSTEM DESIGN
For the work presented in this paper, we implemented the ba-
sics of a voice-interacted task guidance and logging system.
(cf. Figure 2) The system is able to display workflow steps,
and navigate or mark steps as done through voice interaction.
It also includes the ability to capture audio and video from
Glass , and interactions with Glass in the background. Ad-
ditionally gestures made by the dominant hand from a low-
power inertial sensing unit (cf. Figure 3) are recorded. The
data of both systems is merged offline, as this implementa-
tion was only used for this particular experiment. We will
present both system components in this section and detail
their implementations.

The Wrist-Worn Unit
A wrist watch-like 3D acceleration sensing unit is used to
capture motion sequences from the experimenter’s dominant
hand [24]. It consists of a low-power micro-controller con-
nected to an ADXL345 3D-accelerometer. Acceleration data
is logged in a compressed format to an on-board microSD-
card and the included 180mAh-battery can keep the system
running for at least 2 weeks continuously. The data from the
wrist-worn unit is in the system’s current implementation re-
trieved after the experiment are completed via USB, and an-
alyzed offline for gestures that can be correlated to certain
experiment steps. The device is reprogrammable via USB
and protected by a plastic enclosure, visible in the lower-
right section of Figure 1. The sampling rate was set to 50Hz,
and collected in ±4g range, for the studies described in the
deployment and experiment sections hereafter.

Google’s Glass
Glass was used to capture experiments via its side-mounted
video camera and microphone. Additionally, an appli-
cation was designed to guide experimenters through pre-
determined experiment protocols. For the latter, an exam-
ple user interface presented to participants can be seen in
Figure 2 and shows some of the steps of the DNA extraction
protocol that was used during this paper’s study. Single steps
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Figure 4. The deployment of the system combining Glass and the wrist-worn accelerometer, while continuously recording researchers at work in a wet
lab. The environment is often simultaneously used by large groups of researchers or students and is equipped with a multitude of shared instruments
and special safety zones, making it challenging to augment the environment (top half). Hands-free recording is a strong advantage: Often, experiments
require gloves for minimizing contamination risks; Wet labs furthermore contain a large variety of compounds, instruments and lab equipment that
require both hands to be used (bottom half). All these photos are unaltered frames taken from continuous Glass video recordings.

in the protocol are shown in a timeline, that could be navi-
gated to the left (for past steps) and to the right (for future
steps). The wearer has the choice to navigate the protocol
using either the swipe gestures on the touchpad1on the Glass,
or by voice commands. The subset of voice commands cho-
sen for this were "previous", "next slide", "check this step"
and "mark as done". These commands were chosen by ex-
perimenting with their recognition rates, trying to increase
their phonetic dissimilarity for multiple speakers. By saying
"check this step", "mark as done" or by tapping the touchpad,
the user can let the system know that the step was performed,
which is visualized by striking the current item through. The
"ok, glass" guard phrase, which is usually required for Glass
apps, was removed to minimize interaction time. If this item
was the last step on the slide, the system automatically dis-
plays the next step. The application was implemented using
the Android Framework, and works on Google’s Glass as
well as on Tablets and Smartphones.

The guiding part of our system is designed to be easily adapt-
able to different protocols. For this, we decided to use a
document-driven approach, in which a human-readable and
machine-parseable document contains the steps of a proce-
dural protocol. These steps are written down in Markdown
[25] documents. This allows experimenters to modify and
present these workflow steps on different personal comput-
ing accessories (like PCs, laptops, Smartphones, and Wear-
1The touchpad was enabled in this study, to avoid problems with
voice recognition for non-native english speakers.

ables) without much implementation effort. It furthermore
allows for linking documents, and referencing additional me-
dia files. However, the major reason for using a document-
driven design is that modification of the protocol can be cap-
tured easily in a distributed fashion. Only the transforma-
tions of the document need to be transported to a central
repository. The protocols can then be shared cross-device
and can be scoped on a per-user basis. This provides the
means to share, collaborate on and synchronize the experi-
mental protocol.

The interaction design of a wearable system for recording bi-
ology experiments is another important aspect. It should be
possible to operate in a hands-free manner and stay out of the
user’s way most of the time (after all, the experimenter is in-
terested in the outcome of his/her experiment and not record-
ing his efforts in all detail). Explicit interaction can, for ex-
ample, be achieved through voice recognition, or touch-free
action/gesture/motion recognition. Since such an explicit in-
teraction requires the user’s full attention it should be used
only when necessary. This is the reason why we also take
into account any possible implicit interactions, through con-
tinuously monitoring the user’s wrist movement to infer his
or her context to provide additional information. Such con-
textual information can also be used to provide cues from
large bodies of recorded data, similar to life-logging appli-
cations [11]. For example, imagine an experimenter video-
recording all of his experiments and afterwards being able to
efficiently jump to all sequences where something was pipet-
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ted or to particular steps in his protocols that have been de-
tected via his wrist movements.

DEPLOYMENT AS A RECORDING TOOL
The system as described in the previous section was de-
ployed for recording the users at work in three different wet
laboratory environments: an academic training laboratory,
an academic research laboratory, and a commercial labora-
tory. Four recording sessions of up to a full day were held.
In each recording, up to five microbiology researchers or
students were wearing the system simultaneously, working
within groups of up to four persons. Figure 4 shows some
examples of the video footage taken with Glass. All users
were at all times aware of the recordings (Glass showing the
current recording) and were encouraged to discuss their ex-
perimentation steps and methods, and to provide feedback
of the system and its possible advantages and disadvantages.
The sound recording’s quality of Glass was good enough in
all environments to understand both the user and the people
in the immediate proximity. After the system was handed out
and activated, we did not remain present in the laboratories,
and examined the contents of the videos afterwards.

In general, the acceptance of wearing the system was high,
and even in the teaching laboratory, where approximately 20
fellow students were working in the same immediate envi-
ronment of the user, nobody expressed concerns about the
possibility of them being recorded. The latter observation
might be due to the fact that experimenters do frequently take
their personal cameras with them to photograph or record im-
portant experiment results. Apart from a few remarks made
towards the end of the teaching sessions (which lasted over
three hours each), we did not note any big signs of discom-
fort in wearing the system: Glass was at two occasions taken
off to concentrate on using a microscope, and once to demon-
strate it to a fellow user. One of the wrist-worn accelerometer
sensors did not record consistent data as it was not strapped
on tight enough and had rotated along the wrist during the
course of the experiments. The video quality of Glass (at
720p) tends to be good enough to be able to read most com-
pound labels and handwritten notes.

Several findings that emerged from the video footage are es-
pecially noteworthy: (1) Even in laboratories with a lower
safety clearance which implies minimal contamination risks
and therefore does not require gloves, the option of taking
pictures or videos hands-free is a strong advantage. On many
occasions, users required both hands simultaneously to han-
dle instruments and the fact that Glass was able to record
from a first-person perspective was at several occasions men-
tioned as a great feature. (2) The use of pen and paper
notes is still largely preferred as a primary capturing system.
Partly, this is due to its flexibility, but the videos also made
clear that ad-hoc written notes, labels, instructions and lab
books are truly ubiquitous in the wet lab. A digital system
for providing assistance in these surroundings, apart perhaps
from some tightly-regulated laboratories, has more chance of
adoption when introduced as a complementary technology.
(3) The ability of following what is recorded by Glass in the
peripheral display was at multiple times used to guide the
capturing of the video. When looking through a microscope,

task actions

1 solvent combine 50ml lukewarm water,
1/2 teaspoon salt and 3ml dishsoap in
200ml beaker and stir

pouring,
transfer,
pipetting,
stirring

2 cutting peel and cut onion/tomato peeling,
cutting

3 mixing mix into 200ml beaker, add 1ml
detergent, and stir

pouring,
pipetting,
stirring

4 waterbath put 200ml beaker into hot wa-
terbath for 10mins

5 waterbath put 200ml beaker into cold
waterbath for 5mins

6 pestling pestle mixture pestling
7 filtrate put filter into funnel, funnel into

100ml beaker, push mixture through filter
8 pouring pour 1.5ml of mixture into test

tube, mix in 5ml freezing ethanol
pouring,
pouring

9 detection carefully invert test tube multi-
ple times

inverting

Table 1. The (shortened) DNA extraction protocol as shown to partici-
pants on Google Glass. The protocol was interleaved for both an onion
and tomato, creating 18 steps in total. Gestures used to detect each step
in the protocol are show in the right column.

for instance, several users used their Glass’ display to make
a recording through the eyepiece. Instead of taking immedi-
ate notes on compound quantities, e.g., to record how many
millilitres of a solution were obtained, users would hover it
closely to Glass’ camera. Both during and after the deploy-
ments, many of the users were interested in using the system
for subsequent times and expressed that they could envision
continuing using it for capturing their experiment work.

The idea for this deployment was to get first insight into the
working environment of experimental biologists, and also
get a first idea of the usability of using Glass for recording
only. To this end, we elicited challenges from several point-
of-view video recordings from several laboratories. One spe-
cific challenge, that was also mentionend by participants, is
the navigation of such continuous recordings. In the remain-
der of this paper we will look at the possibility of using typ-
ical hand gestures to detect the actions conducted during an
experiment. These actions, extracted from a procotol’s de-
scription, will then be used to extract time-codes than can in-
dex such continuous recordings - serving as the cues to nav-
igate these recordings and providing guidance just-in-time.

EVALUATIONS IN EXPERIMENT GUIDANCE
We chose DNA extraction, a common entry-level laboratory
experiment, for testing the feasibility of our system for both
guiding novice users through an experiment and recogniz-
ing single activities in an experimental procedure using the
wrist-worn sensor. The experiment is guided by a proto-
col, visualized as a textual step-by-step guide on the Google
Glass display. It contains a sequence of two extractions of
DNA, first that of an onion and second the DNA of a tomato,
with the basic procedure being identical for both. This way
all actions are repeated at least once with different material.
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Figure 5. The mean duration of protocol steps per participants. The figure in the background shows the per-step mean duration across all partic-
ipants (box-and-whisker) and the individual flow for each participant (lines). The figure in the bottom right shows the mean duration of each step
per participant, color-coded to individual steps in the DNA Extraction protocol. Note that each step is repeated twice and interleaved during the
experiment, once for the onion and once for the tomato. Markers on this figure show when an actual user interaction happened (when marking a step
as done for example). The x-axis on both figures is the time taken in minutes.

The two experimental procedures were interleaved to save
time, and each participant had to complete 18 steps in total,
containing 9 different protocol steps to identify (shown in
Table 1) and executed two times per participant. Each pro-
tocol step was described and displayed when activating the
screen of Google Glass (by tilting the head up or tapping
Glass’ swipe area). Participants were instructed to primarly
interact with Glass by speech and to move through the exper-
iment protocol by marking each single step as done. In case
the speech recognition would prove to be impractical, touch
interaction (tapping) and swiping back and forth for moving
between steps was kept as a backup option. The time for
which a step was active on Glass’ display was recorded in a
log file, and is assumed to be the time it took to go through
the displayed instructions. Figure 3 shows the experimental
setting before and during the experiment, as recorded from a
camera that was mounted at the ceiling.

In total, 22 participants took part in our experiments. Partici-
pants were recruited via advertisements in a local newspaper,
representing persons with no prior experience in biology ex-
periments and no affiliation to our research. The experiment
was run in an environment for performing user studies, with
video cameras recording the working bench. Before the task
started, the participants were introduced to the functional-
ity of the Google Glass and how they should use it during
the DNA Extraction, what the different ingredients are e.g.
ethanol or detergent, and where to find them. The partic-
ipants were then fitted with Glass and the wrist-worn sen-
sor, and asked to follow each displayed step and mark them
as done as soon as they are completed. Following an ex-
periment protocol took the participants between 18 and 45
minutes. A successful experiment would result in the DNA
becoming visible as a set of small stripes in a test tube, al-
though for our evaluation it did not matter whether the DNA
extraction was successful in the end.

The choice of novice users instead of professional experi-
menters might be suprising. The goal of this study however,
was to show that hand motion sequences can be used to de-
tect protocol steps and actions. Especially to create a dataset
that can serve as a benchmark for different detection algo-
rithms. It is therefore important to have a high variabilty in
executing different actions, as this is the case also for pro-
fessional experimenters, i.e. everybody has their own styles.
More execution variabilty also means a harder challenge for
the detection system, so if it works for untrained personell
it will most likely work for trained personell as well. Also,
since participants were non-trained, they also adhere stricter
to the protocol, a professional in turn might take shortcuts
in the experiment since he is aware of the overall goal and
working of the experiment. This would create datasets with
different execution that are harder to compare. The recorded
dataset can therefore be used as a baseline benchmark for
recognizing actions that are related to those in a wet labora-
tory - in a systematic manner.

The goals of this study were threefold: First, we looked into
the specific interactions with the guidance applications to see
different usage patterns of participants. Second, we want
to show how well actions (defined as repeated motion se-
quences) can be detected through wrist movement measured
by an accelerometer - or put differently, how discriminative
the measured data is when applied to typical workbench ac-
tivities. Third, we wanted to know whether the detectable
motion sequences (or action sets) correlate with specific pro-
tocol steps. Our interest is first and foremost in knowing
how well a system could detect the combination of record-
ing interactions, while guiding people through a wet labora-
tory experiment, and wrist movements. This could be used
to automatically detect steps in wet laboratory workflows.
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Figure 6. A (typical) page in laboratory notebook and the possibly extracted recognition and guidance system. An action database contains recordings
of wrist motion samples. This database will be used for action detection, which in turn serves as the observations of a Hidden Markov Model, which
contains each step in the protocol as a hidden state. Each protocol steps contains the to be detected actions. Time is implicitly encoded via the number
of made observations. Each protocol step can be displayed on Glass for guidance.

User Interaction with the Glass Application
During the whole experiment, every interaction (both voice
commands and swipes) with the Google Glass application
was logged for later investigation. As this was done in the
background, participants were unaware of this during the
experiment, though they were informed about the interac-
tion logging beforehand. A first observation is that most of
the participants did not follow the protocol in a strict lin-
ear fashion. Sometimes this was due to instructions, that
have not been clearly understood, but became apparent on
future steps. Though sometimes this was also because of
slight delays in the voice recognition with Glass, leading to
commands which were given twice. To still extract the cur-
rently active step, the interaction log was filtered to include
only steps that were visible for more than a few seconds.

From this data, it is possible to extract which step of the DNA
extraction experiment was viewed at which time, and the du-
ration for which this instruction was visible on the display.
Figure 5 visualizes the resulting workflow for each partici-
pant, as well as the mean interaction time per step. It can
be seen that the overall interaction time ranges from 18 to
45 minutes for all participants, and the experiment was com-
pleted in 35 minutes on average. Furthermore, a larger break
can be observed in the middle of the experimental workflow
(cf. the two consecutive water bath steps), which matches
the instruction from the experiment protocol: During these
steps, participants had to wait until both the onion and tomato
mixture had been cooled or heated up respectively, and no
other experiment task could be performed during that period.
While interpreting these figures it should be kept in mind that

the increasing variety in later steps is an artefact of the cu-
mulative display of this particular step’s duration. The figure
to the bottom right contains the color-coded steps which are
the same for both the tomato and onion extraction, i.e. the
steps which are repeated for each participants. For example,
preparing a solvent agent needs to be done twice, and is en-
coded in yellow in this figure. A large variety for solvent
preparation time, in the duration of keeping the mixtures in
the water baths, for filtrating and pestling can be observed.

Based on the data from these interaction logs in combina-
tion with video footage made during the evaluation study
(for which a summary is depicted in Figure 5), the follow-
ing three observations stand out especially:

• There is first of all a large cross-user variety concerning
the duration of each step, most critically for the steps
where participants were instructed to keep a fixed time
(e.g. keeping the mixture in the water bath for a cer-
tain amount of time). For several participants, browsing
through the steps using Glass’ voice commands was too
time-consuming and they switched to swiping gestures,
mid-experiment. This large variety in performance times
has as a consequence that timing within an experiment and
duration of single steps are important parameters, though
they are also less valuable for automatic detection or re-
construction of the experiment protocol.

• Even though participants were asked, for steps that con-
sisted out of multiple items, to mark each item with a spe-
cial voice command before the study, several found this
too cumbersome and did not adhere to this instruction -
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action precision recall F1-score

cutting 0.23±0.12 0.29±0.17 0.25±0.12
inverting 0.60±0.21 0.64±0.34 0.58±0.25
peeling 0.04±0.04 0.12±0.15 0.06±0.06
pestling 0.62±0.21 0.42±0.13 0.47±0.12
pipetting 0.58±0.13 0.52±0.11 0.54±0.11
pouring 0.03±0.04 0.13±0.27 0.04±0.05
stirring 0.32±0.25 0.37±0.21 0.29±0.15
transfer 0.08±0.10 0.25±0.34 0.08±0.09

0.31±0.29 0.34±0.29 0.29±0.25

(a) cross-participant, i.e. leave-one-participant-out

action precision recall F1-score

cutting 0.62±0.20 0.75±0.11 0.66±0.16
inverting 0.80±0.21 0.93±0.16 0.84±0.18
peeling 0.26±0.17 0.51±0.21 0.32±0.17
pestling 0.87±0.08 0.80±0.07 0.83±0.07
pipetting 0.79±0.09 0.77±0.06 0.78±0.06
pouring 0.45±0.22 0.80±0.24 0.55±0.21
stirring 0.83±0.11 0.80±0.08 0.81±0.08
transfer 0.33±0.28 0.49±0.34 0.36±0.28

0.62±0.29 0.73±0.23 0.64±0.26

(b) per-participant, i.e. detecting gestures for one participant only
Table 2. Precision/Recall/F1-Scores based on 250 iterations of a stratified random split (for per-participant scores) and leave-one-out cross-fold

validation for cross-participant scores.

most often, these participants worked through the whole
instruction set for one such a particular information card,
and then marked all items in one go.

• Finally, it is important to note that all participants were
able to finish their experiment with sole guidance of the
wearable system, without abandoning the experiment, and
extracting the DNA successfully. Figure 5 shows the time
(in minutes) that all experiment steps took per participant.

Detecting Actions and Steps from Wrist-Movement
For evaluating the detection of experiment steps by means
of the wrist-worn accelerometer data, the ground truth was
gathered by annotating the recordings of an external cam-
era2, pointing at the manipulation area of the participant. By
(manually) annotating the video we extracted 9 different ac-
tions, which had a high visual similarity and were repeated
often during the experiment: The onion and the tomato were
both cut, and the onion was also peeled. A pipette was used
for combining different ingredients, e.g. pipetting the mix-
ture into the test tube. The transfer activity describes using
a spoon for putting, e.g. salt, in a beaker, but not using it
for stirring for which a stirring rod was available. Pouring
describes putting the mixture from one beaker to another or
when pouring it into the filter. Pestling refers to mincing the
mixture and inverting to putting the test tube upside down
and back again. We refer to these video annotations as the
ground truth in the following (cf. Table 2).

Wrist 3D-acceleration data was recorded throughout the ex-
periment on the participant’s dominant hand with a sampling
rate of 50Hz, within a range of ±4g. In total, 1258mins of
accelerometer data were recorded. Additionally, the interac-
tion with Google Glass was logged during the experiments,
i.e. the timestamps when users switched to the next steps, and
this data has been stored locally on the device and was aggre-
gated on a PC after the experiment. For time synchronization
we relied on the internal clocks of both Glass and the wrist-
worn sensor. For video-annotated acceleration data, we addi-
tionally manually fine-tuned the alignment by matching the
video and sensor data stream according to easily identified
activities, such as stirring.
2The camera on Glass was not used to make sure that the whole
manipulation area was visible throughout the experiment.

Action Detection
To recognize the activities listed in Table 2 from accelera-
tion data, we chose a k-nearest Neighbour (k=8) classifier3

with a 6D feature set, containing the mean and standard de-
viation of the 3D acceleration data during 20%-overlapping
windows of 800ms duration. The video-annotated data
was cross-validated cross-participant and per-participant.
Cross-participant validation was achieved with a Leave-One-
Participant-Out validation, while per-participant validation
was done by a 250-times Stratified Shuffle Split. Precision,
Recall, and F1-Scores for each evaluation are listed in Ta-
ble 2. It is visible that cross-participant gesture recognition
is much worse than per-participant: On average, the cross-
participant F1-Score is 36% worse than per-participant,
which is most probably caused by participants performing
gestures in a slightly different fashion or due to sensors not
being firmly attached. Inverting, pestling and pipetting are
the three actions that show a particular high F1-score per-
participant and comparable F1-scores across participants. In
contrast to stirring, which is detectable per-participant but
not cross-participant. Cutting, peeling, pouring and transfer-
ring (which in our case meant moving material with a spoon)
are already hard to detect per-participant. The confusion ma-
trices (cf. Figure 7) show that pipetting and pestling are most
often confused with other actions, which therefore make it
advisable to remove those if possible. From this we con-
clude that several characteristic actions can be detected with
reasonable performance, when trained per-participant.

Protocol Step Detection
Although some actions can be detected well enough to allow
a system to estimate a reconstruction of known experiment
steps afterwards, it is unclear whether our proposed system
would reliably detect single protocol steps. More specifi-
cally, it would be interesting to obtain accurate detections,
from wrist movements alone, that show in which step in the
experiment a participant is in. This can be an important cue
when reviewing a video recording done in background and
would allow the experimenter to jump to a specific point in
the protocol during review. For investigating and evaluating
this, we modeled the digitized protocol as a Hidden Markov
Model (HMM), where hidden states correspond to steps in
the experiment protocol, and observations map to the actions
3the scikit-learn [26] implementation was used.
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(a) cross-participant, i.e. leave-one-participant-out
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(b) per-participant, i.e. only detecting gestures for one participant.
Figure 7. Confusion matrices for kNN detection based on 800ms-windowed mean and standard deviation features extracted from 3D-acceleration

data. Cells contain the average absolute number of identified samples. The color designates the normalized total occurrence. Each stratified random
split was repeated 250 times.

executed in that steps as defined in Table 1. The Glass in-
teraction log is split into equidistant timespans, which are
marked with the current protocol step: This will serve as the
ground truth and represents our detection target.

The HMM’s transition probabilities of the hidden states were
set to mimic a linear chain, with a high probability for stay-
ing in the same state (workflow step) and a non-zero proba-
bility to switch to the next step. This models the linear nature
of a protocol execution. The emission probabilities for each
state can be generated by uniformly distributing the occur-
rence of each action in the state’s action set. For example,
the solvent step (cf. Table 1) has high emission probabili-
ties for the pouring, transfer, pipetting and stirring actions.
The detection step in contrast only has a high probability for
inverting. To account for possible mis-classifications of the
kNN-detector, each action has a low occurrence probability
in each workflow step. This represent a layered approach,
in which the first layer detects actions from wrist movement
via a kNN-detector and the second layer detects the work-
flow steps of the protocol via a HMM.

For the evaluation, we detected the workflow of each par-
ticipant with the above-described kNN-HMM approach. We
compared this workflow with the data gathered by the inter-
action log, i.e. which step was looked at when. Assuming
that participants had the currently executed step also active
on their display, we could also say that we check whether
the currently executed step was detectable. The result of
this evaluation can be seen in Figure 8. The confusion ma-
trix shows that the mixing and solvent step are most often
confused, which is due to the fact that they have almost
the same action set. Only an additional transferring action
distinguishes them, which is however hardly detectable by
our kNN algorithm. With the presented layered approach,
a mean F1-Score of 56% for detecting workflow steps from

wrist movements is achievable. This however includes work-
flow steps which have an empty action set, and are therefore
difficult to detect. These steps include the waterbath and fil-
trate step, which for instance did not have definable activities
linked to them: Excluding these steps from the calculation
improves the mean F1-score to 71%. It is important to note,
however, that such steps do occur in real wet lab experiments
and therefore demand complementary detection approaches
(e.g. object detection through RFID-markers) .

The presented layered approach can not only be used to filter
wrist movement data on a time-based scale, but also to in-
tegrate different sources of information. Therefore, it lends
itself well to integrating further sensors. One shortcoming
of the presented HMM approach is that the actions set is as-
sumed to be not ordered, i.e. it does not matter in which order
the actions are executed. This might be important informa-
tion, that is not directly modeled. In this case, conditional
random fields (CRF) might prove to be a more suitable alter-
native. To be practical, a system like the one presented here
would need to be either continuously re-learning motion se-
quences, or limit itself to actions that have proven to be de-
tectable across users such as inverting, pestling and pipetting.

FUTURE WORK
As we now have a first implementation of a system that sup-
ports work flows in wet laboratory experiments, future work
could integrate more sources of information and more means
of support. One example is the use of object identification,
for instance via RFID tags on the objects that are read out
by a wrist-worn RFID reader [27] or by instrumented ob-
jects like a Bluetooth-enabled pipette. These features are
also useful while establishing a protocol, e.g. instead of hav-
ing to note down how much of a compound has been used,
the pipette already "told" the system, similar to how the just
used compound could be identified.
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(a) mean per-participant confusion matrix

# task precision recall F1-score

1 solvent 0.64±0.17 0.93±0.18 0.73±0.15
2 cutting 0.88±0.23 0.83±0.28 0.84±0.25
3 mixing 0.69±0.31 0.49±0.21 0.52±0.18
4,5 waterbath 0.27±0.37 0.09±0.19 0.10±0.20
6 pestling 0.64±0.30 0.88±0.25 0.72±0.27
7 filtrate 0.62±0.40 0.09±0.21 0.12±0.20
8 pouring 0.86±0.23 0.79±0.24 0.81±0.22
9 detection 0.62±0.36 0.75±0.40 0.65±0.35

0.65±0.35 0.61±0.41 0.56±0.36

(b) mean per-participant classification scores.
Figure 8. Scores for the workflow step detection based on a Hidden-Markov Model, which uses observations from the kNN-based action classification.
It is visible that classification scores vary between participants. Some steps are not detectable (waterbath, filtrating) since they have no definable and
therefore detectable actions/observations (cf. Table 1).

The system could integrate many other features such as
maintenance and resource allocation ("Is the centrifuge
available for the next five hours?", "Is compound X in
store?") across multiple lab members, and tools such as re-
minders for lengthier procedures or concentration calcula-
tors. Provisions to avoid cross-contamination through shared
lab equipment (e.g. flasks, pipettes) could be extended by
recording their usage, which would also allow tracing back
contaminations after they have been detected. Retrieval
and editing of the workflows after a completed experiment,
would provide an extra possibility for the biologist to re-
flect on the results in detail. A recording infrastructure, such
as the one presented in this paper, can be extended to pro-
vide a memory extension, detected actions, protocol steps, or
used tools can serve as searchable cues for other recordings
like video or audio. Furthermore, these cues might be em-
ployed to compare repetitions of the same protocol, allowing
to quickly spot differences in their execution.

CONCLUSIONS
This paper presented a hands-free wearable system to sup-
port experimenters in a wet laboratory environment. A pro-
totype, based on Google’s Glass and a wrist-worn inertial
data logger, was used to capture experiments and recall steps,
navigate back and forth those steps, and mark them as done.
An analysis of the challenges, as well as the acceptance and
wearability of the system, based on "in-situ" observations in
several different microbiology laboratories was conducted.

The original motivation of using Glass as a recording and
guidance tool for an experimenter was tested for feasibil-
ity in the presented user study: 22 novice participants were
asked to complete an interleaved entry-level DNA-extraction
experiment. Participants solely relied on Glass for guid-
ance on the procedure and were all able to finish their
experiment successfully. Participants’ wrist motions were

recorded throughout all experiments for studying whether
actions made during experiments can be recognized, as well
as used, for example in navigating continuous video record-
ings of procedures. Actions were detected with a k-Nearest-
Neighbor classifier, of which only a limited set could be de-
tected reliably (per-participant, F1-score > 80%). A Hidden
Markov Model, built by extracting action sets for each pro-
tocol step from the digitized protocol, was used for detecting
the currently executed step. This layered approach allowed
to reconstruct the majority of experiment steps afterwards.

Detecting the executed steps in a protocol could serve as a
cue for reviewing work post-experiment, or for automatically
navigating a protocol on Glass while the experiment is per-
formed. In this paper, we presented a benchmark dataset to
evaluate detection strategies, with common actions found in
many micro-biology experiments. Although our proposed
system could be modified for use in other domains, e.g. fol-
lowing recipes in the kitchen, it is important to note that wet
laboratories pose much stricter protocols. The ability to cap-
ture and review an experiment up to several weeks later is
furthermore in wet labs more important than the actual guid-
ance - when the experimeter finds out that something went
wrong with the experiment, a detailed review of executed
steps could shed light on the cause. Moreover, a wearable
and touch-free system does not only decrease the chance of
contamination, it also provides the means to interact with a
computing system right on the spot, in turn minimizing the
required interaction efforts.

REPRODUCIBILTY STATEMENT
To allow reproduction of the presented results, all video
material and sensor recordings is publically available
at http://es.informatik.uni-freiburg.de/index.php/
datasets/ubicomp2015/.

10

http://es.informatik.uni-freiburg.de/index.php/datasets/ubicomp2015/
http://es.informatik.uni-freiburg.de/index.php/datasets/ubicomp2015/


ACKNOWLEDGMENTS
We thank all study participants for performing the lab stud-
ies, as well as the research staff at Cardoso Lab of the Techni-
cal University Darmstadt for their kind assistance and helpful
discussions during the analysis phase of their microbiology
experiments. Furthermore we like to thank all participants
of the DNA Extraction study at the Federal Institute for Oc-
cupational Safety and Health Dortmund, Germany, and the
staff for their kind assistance (especially Ulrich Hold and
Nina Schelter) and execution of the study.

REFERENCES
1. Eastmond, E. E., Mackay, W. E., Tabard, A., East-

mond, E. E., and Mackay, W. E. From Individual to
Collaborative: The Evolution of Prism, a Hybrid Labo-
ratory Notebook. Comput. Support. Coop. Work. 2008.

2. Bird, C. L., Willoughby, C., and Frey, J. G. Laboratory
notebooks in the digital era: the role of ELNs in record
keeping for chemistry and other sciences. Chem. Soc.
Rev. 42, 2013: 8157–75.

3. Roubert, F., and Perry, M. Putting the Lab in the Lab
Book : Supporting Coordination in Large , Multi-site
Research. Proc. 27th Int. BCS Hum. Comput. Interact.
Conf. 2002: 1–10.

4. Giles, J. Going paperless: The digital lab. Nature,
481(7382), Jan. 2012: 430–431.

5. Klokmose, C. N., and Zander, P.-O. Rethinking Labo-
ratory Notebooks., 2010: 119–140.

6. Myers, J. D. Collaborative Electronic Notebooks as
Electronic Records : Design Issues for the Secure Elec-
tronic Laboratory Notebook ( ELN ). Simul. Ser. 2003:

7. Taylor, K. T. The status of electronic laboratory note-
books for chemistry and biology. Curr. Opin. Drug
Discov. Devel. 9(3), 2006: 348–353.

8. Bernstein, M., Kleek, M. A. X. V. A. N., Karger,
D., and Schraefel, M. C. Information Scraps: How
and Why Information Eludes our Personal Information
Management Tools. ACM Trans. Inf. Syst. 26(4), 2008:
24.

9. Mackay, W. E., Pothier, G., and Letondal, C. The Miss-
ing Link: Augmenting Biology Laboratory Notebooks.
Symp. User Interface Softw. Technol. 2002.

10. Yeh, R. B., Liao, C., Klemmer, S. R., Lee, B.,
Kakaradov, B., Stamberger, J., Paepcke, A., and Sci-
ences, B. ButterflyNet: A Mobile Capture and Ac-
cess System for Field Biology Research. Hum. Factors
Comput. Syst. 2006, 1–10.

11. Gemmell, J., Bell, G., Lueder, R., Drucker, S., and
Wong, C. MyLifeBits: Fulfilling the Memex Vision.
Int. Conf. Multimed. 2002.

12. Arnstein, L., Franza, R., Borriello, G., Consolvo, S.,
Hung, C.-y., Franza, R., Zhou, Q. H., Borriello, G., and
Consolvo, S. Labscape: a smart environment for the
cell biology laboratory. IEEE Pervasive Comput. 1(3),
July 2002: 13–21.

13. Borriello, G. Invisible computing: automatically using
the many bits of data we create. Philos. Trans. A. Math.
Phys. Eng. Sci. 366(1881), 2008: 3669–3683.

14. Hughes, G., Mills, H., De Roure, D., Frey, J. G.,
Moreau, L., Schraefel, M. C., Smith, G., and Zaluska,
E. The semantic smart laboratory: a system for sup-
porting the chemical eScientist. Org. Biomol. Chem.
Nov. 2004:

15. Coles, S. J., Frey, J. G., Bird, C. L., Whitby, R. J., and
Day, A. E. First steps towards semantic descriptions
of electronic laboratory notebook records. J. Chemin-
form. 5, 2013: 52.

16. Tabard, A., Hincapié-Ramos, J. D., Bardram, J. E.,
Ramos, J. H., and Bardram, J. E. The eLabBench in
the wild: supporting exploration in a molecular biol-
ogy lab. Hum. Factors Comput. Syst. 2012.

17. Echtler, F., Klinker, G., Häussler, M., and Klinker,
G. BioTISCH: the interactive molecular biology lab
bench. CHI Ext. Abstr. Hum. Factors Comput. Syst. 10,
5–10.

18. Scholl, P. M., and Van Laerhoven, K. Wearable digiti-
zation of life science experiments. Proc. UbiComp ’14
Adjunct, 1381–1388.

19. Minnen, D., Starner, T., Ward, J. A., Lukowicz, P., and
Tröster, G. Recognizing And Discovering Human Ac-
tions From On-Body Sensor Data. Multimed. Expo,
2005. ICME 2005, 2005:

20. Lukowicz, P., Timm-Giel, A., Lawo, M., and Herzog,
O. WearITwork: Toward Real-World Industrial Wear-
able Computing. IEEE Pervasive Comput. 6, 2007: 8–
13.

21. Nicolai, T., Sindt, T., and Witt, H. Wearable comput-
ing for aircraft maintenance: Simplifying the user in-
terface. Appl. Wearable Comput. 2006.

22. Stiefmeier, T., Roggen, D., Ogris, G., Lukowicz, P.,
and Tr, G. Wearable Activity Tracking in Car Man-
ufacturing. IEEE Pervasive Comput. 7(2), Apr. 2008:
42–50.

23. Ockerman, J., and Pritchett, a.R. Preliminary investi-
gation of wearable computers for task guidance in air-
craft inspection. Int. Symp. Wearable Comput. 1998:
33–40.

24. Berlin, E., and Van Laerhoven, K. Detecting leisure
activities with dense motif discovery. Proc. UbiComp
’12, 250–259.

25. Gruber, J. Markdown: Syntax. address: http : / /
daringfireball.net/projects/markdown/syntax.

26. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
and Cournapeau, D. and Brucher, M. and Perrot, M.
and Duchesnay, E. Scikit-learn: Machine Learning in
Python. J. Mach. Learn. Res. 12, 2011:

27. Berlin, E., Liu, J., Laerhoven, K. V., and Schiele, B.
Coming to Grips with the Objects We Grasp: Detecting
Interactions with Efficient Wrist-Worn Sensors. Tangi-
ble, Embed. Embodied Interact. 2010.

11

http://dx.doi.org/10.1039/c3cs60122f
http://dx.doi.org/10.1039/c3cs60122f
http://dx.doi.org/10.1039/c3cs60122f
http://dx.doi.org/10.1038/481430a
http://dx.doi.org/10.1007/978-1-84996-211-7
http://dx.doi.org/10.1007/978-1-84996-211-7
http://dx.doi.org/citeulike-article-id:5650082
http://dx.doi.org/citeulike-article-id:5650082
http://dx.doi.org/10.1109/MPRV.2002.1037717
http://dx.doi.org/10.1109/MPRV.2002.1037717
http://dx.doi.org/10.1098/rsta.2008.0128
http://dx.doi.org/10.1098/rsta.2008.0128
http://dx.doi.org/10.1039/B410075A
http://dx.doi.org/10.1039/B410075A
http://dx.doi.org/10.1186/1758-2946-5-52
http://dx.doi.org/10.1186/1758-2946-5-52
http://dx.doi.org/10.1145/2638728.2641719
http://dx.doi.org/10.1145/2638728.2641719
http://dx.doi.org/10.1109/MPRV.2007.89
http://dx.doi.org/10.1109/MPRV.2007.89
http://dx.doi.org/10.1109/MPRV.2008.40
http://dx.doi.org/10.1109/MPRV.2008.40
http://dx.doi.org/10.1109/ISWC.1998.729527
http://dx.doi.org/10.1109/ISWC.1998.729527
http://dx.doi.org/10.1109/ISWC.1998.729527
http://dx.doi.org/10.1145/2370216.2370257
http://dx.doi.org/10.1145/2370216.2370257
http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax

	Abstract
	Introduction
	Related Work
	System Design
	The Wrist-Worn Unit
	Google's Glass

	Deployment as a Recording Tool
	Evaluations in Experiment Guidance
	User Interaction with the Glass Application
	Detecting Actions and Steps from Wrist-Movement
	Action Detection
	Protocol Step Detection


	Future Work
	Conclusions
	Reproducibilty Statement
	Acknowledgments

