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ABSTRACT
This paper presents a novel fitness and preventive health
care system with a flexible and easy to deploy platform.
By using embedded wearable sensors in combination with a
smartphone as an aggregator, both daily activities as well as
specific gym exercises and their counts are recognized and
logged. The detection is achieved with minimal impact on
the system’s resources through the use of customized 3D in-
ertial sensors embedded in fitness accessories with built-in
pre-processing of the initial 100Hz data. It provides a flex-
ible re-training of the classifiers on the phone which allows
deploying the system swiftly. A set of evaluations shows a
classification performance that is comparable to that of state
of the art activity recognition, and that the whole setup is
suitable for daily usage with minimal impact on the phone’s
resources.

1. INTRODUCTION
The World Health Organization predicts that chronic

diseases will become the most expensive problem faced by
current health care systems and sees the integration of pre-
vention into health care as the main solution for this prob-
lem [14]. A paradigm shift towards integrated, preventive
health care as well as equipping patients with information,
motivation, and skills in prevention and self-management
are described as essential elements for solving this problem.
As body sensor network (BSN) systems are capable of con-
tinuously monitoring a person’s physiological and physical
state, they form a promising tool that equips users with the
required information and motivation.

Many BSN-based projects in health care [6, 10] focus
on monitoring of a particular disease or set of physiologi-
cal signals. They benefit from the independence from sta-
tionary in-hospital observations, allowing patients to freely
move and live their daily life while being monitored over
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longer times and under more realistic conditions. We focus
on preventive health care and present a system that helps
to reduce a person’s physical inactivity which is one of the
risk factors of many costly and disabling health conditions
[14]. Studies [5, 12] have shown that an Internet and phone-
based user motivation system can significantly increase and
maintain this level of physical activity. Therefore, captur-
ing a person’s activities throughout the day is an important
task of BSN-based preventive health care applications. The
captured information is then used for motivating the person,
could be shared with friends via social platforms or sent to a
workout database which, in return, calculates a new workout
plan based on completed workouts.

This work contributes to the field of BSN-based preven-
tive health care applications. It performs daylong activity
recognition and heart rate monitoring and adapts to given
requirements on activity recognition. Pre-processing on the
sensors saves the system’s resources. In a base setup for
daily activity monitoring, a set of a single customized ac-
celerometer, a smartphone, and a heart rate sensor are used
to detect five different activities, monitor the heart rate and
calculate the calorie expenditure. When a person wears ad-
ditional fitness accessories during a workout a more detailed
activity recognition that gives precise workout information is
provided. In this gym workout setup, two more customized
accelerometers are added which allow detecting sixteen ac-
tivities and counting of individual weight lifting exercises.

This paper is structured as follows: First, related work is
presented. Afterwards, a system overview of myHealthAssis-
tant, a preventive health care application that monitors both
daily activities as well as very detailed gym exercises includ-
ing repetition count is given. Both scenarios are presented
and evaluated in Sections 4 and 5. The whole system’s per-
formance is finally discussed in Section 6, after which con-
clusions and a summary of our main results are made.

2. RELATED WORK
In [7] the authors propose an activity recognition system

that utilizes phone-based accelerometers for detecting a user
walking, jogging, climbing stairs, sitting, and standing. La-
beled accelerometer data from 29 users were collected and
10-second intervals of training data used to induce a pre-
dictive activity recognition model. By implementing the ac-
tivity recognition system on a cell phone, the daily habit
of a huge amount of users can be collected. In that paper
a real-time detection was not supported. The system pre-
sented in [4] supports real-time activity recognition. Three
MotionBand sensors attached to a person’s wrist, hip, and



ankle provide accelerometer, magnetometer, and gyroscope
measurements to the user’s phone via Bluetooth. By using
feed-forward backpropagation neural networks the system
distinguishes among six different activities, named resting,
typing, gesticulating, walking, running, and cycling.

In [11] a combination of five accelerometers and one heart
rate sensor is used. This combination allows not only recog-
nizing fifteen exercises but also detecting the intensities of
four of them. The real-time recognition is done on a laptop
computer. Besides using the heart rate sensor for detecting
the intensity of exercises, the authors also used the sensor for
increasing the exercise recognition accuracy. Unfortunately,
the resulting improvements were very low.

The authors of [1] present a comparison between two ap-
proaches for each, detecting and counting weightlifting ex-
ercises. For recognition they chose Näıve Bayes Classifiers
and Hidden Markov Models and for counting they imple-
mented a peak counting algorithm and the Viterbi algorithm
with a Hidden Markov Model. An accelerometer glove and
a posture clip serve as the data source for detecting nine
weightlifting exercises. All calculations are done off-line.
One outcome of this work is that the counting algorithm
has to be adapted to different exercise speeds in order to
improve its accuracy.

Compared to the related work, our approach provides
day-long real-time activitiy recognition for different sets of
sensor configurations. This allows detecting daily activities
as well as specific gym exercises and repetition information.

3. SYSTEM OVERVIEW
The application, myHealthAssistant, focuses on auto-

mated activity recognition and works on different granular-
ities. For monitoring a person’s daily activity, a coarse-
grained activity recognition that detects only a few fitness-
relevant activities is sufficient and does only require a small
sensor network. For detecting all aspects of a gym work-
out, more precise activity recognition is necessary and addi-
tional information like the repetitions of weight lifting exer-
cises is desired. This fine-grained activity detection needs a
larger network of body sensors and increases the complexity
of the system. The following fitness diary recognizes both
the coarse-grained daily activities as well as the fine-grained
gym exercises including additional repetition information.
It stresses different aspects of a flexible body sensor net-
work platform such as adaptability, seamless switching be-
tween sensor configurations, and multi-modal data process-
ing. Figure 1 shows the sensor configurations of our case
study. The calorie expenditure calculation shown in Fig-
ure 3 is based on a study from [15] using age, gender, weight
and heart rate.

3.1 System Setup

3.1.1 Android Platform
Android [3] is an open source mobile operating system

for smartphones and tablet PCs that uses a modified ver-
sion of the Linux kernel. Software can be written in Java
and executed in a specialized virtual machine. The number
and functionality of Android devices grow rapidly and fit
very well to the area of BSNs. A smartphone is unobtrusive
and, hence, it can be used for daily (patient) monitoring
whereas a tablet PC at the doctor’s office can be used for
better visualization of the patient’s health parameters. Both

(a) (b)

Figure 1: BSN consisting of a smartphone, a heart
rate monitor, and a setup for daily activity recogni-
tion (a) and gym exercise detection (b).

Figure 2: The inertial units were designed to oper-
ate as long as possible on a lightweight battery. A
dedicated microcontroller calculates basic statistics
and the peak features on-board before transmitting
them wirelessly to the smartphone.

devices are running the same system and allowing a seam-
less switching. The Motorola Milestone phone serves as an
Android 2.1 device for our case study.

3.1.2 Sensors
Much of the early data processing in the proposed system

is done as close as possible to the sensors. For the inertial
sensor, a custom platform was implemented that samples
the data from a 3D accelerometer (the ADXL330 from Ana-
log Devices) at 100Hz and calculates per axis the mean and
variance over a sliding one-second window, as well as char-
acteristic peak features to enable a robust exercise counting
(as shown later in Section 5.2). The microcontroller, a fast
PIC 18F4550 from Microchip, operates at 48Mhz when cal-
culating and is put to a low-power idle mode between sam-
ples being taken and processed. Figure 2 shows the uncased
prototype of our wearable inertial sensor, with the battery
wedged between the inertial sensing board and a Connect-
Blue SPA 311 OEM module. On a small 360mA Li-Ion
battery that is fully charged, the sensor can operate under
the aforementioned conditions for over 50 hours. Recharging
the module can be done over a standard USB port.

The Zephyr HxM Bluetooth sensor [16] serves as our
heart rate sensor. It monitors heart specific parameters in-
cluding heart rate, calories burned, and R-R intervals as well
as the wearer’s step counts, speed, and distance. The sensor
operates for 24 hours with a full charge.



Bluetooth is used for the communication among the sen-
sors and the smartphone since it is well integrated in current
smartphones and supported by most Android devices. In ad-
dition, there are already various Bluetooth-enabled (health
care) sensors as consumer electronics products. The runtime
of approximately 12 hours for the entire system, consisting of
a wireless heart rate sensor, wireless custom-built accelerom-
eters, and the Android smartphone, largely depends on the
phone itself.

The sensor setup for daily activity detection consists of
one accelerometer attached at the user’s leg, a heart rate
sensor, and a smartphone running myHealthAssistant. For
a more detailed detection of the weight lifting exercises, in-
cluding counting, two more accelerometers are needed: one
in a weight lifting glove, and the other integrated in a chest-
strap. All a person has to do is to switch on the sensors,
wear them and the system connects to the newly available
sensors and begins the fine-grained gym exercise detection.

3.2 Software Implementation
Our fitness diary application is built upon an event-based

middleware we developed for BSNs. The event-driven ar-
chitecture inherently supports ad-hoc connections which is
an important feature since BSN configurations change over
time. Our case study for instance consists of two network
configurations, one for daily activities and one for gym ex-
ercises. The event-driven architecture provides a seamless
adapting from one to another configuration. Furthermore,
having sensor- and application-specific modules as well as a
layered structure in our middleware increases extendibility
and adaptability. The bottom layer consists of sensor mod-
ules, the intermediate layer of an event handler, a database
and application-specific modules, and the top layer consists
of the user interface. The following describes the architec-
ture in more detail.

3.2.1 Layered, Event-driven Architecture
Sensors connected to the Android phone are linked to

sensor-specific modules at the bottom layer. Raw sensor
data is sent to the corresponding module which translates
the raw data to events. An event basically consists of an
event ID, producer ID, timestamp, and sensor-related infor-
mation. For instance, HeartRateEvents additionally con-
sist of the current heart rate and AccelerationEvents con-
sist of the mean acceleration values and variances per axis.

At the intermediate service layer, an EventHandler con-
sumes both HeartRateEvents and AccelerationEvents which
are forwarded to a SQLite database, the ActivityRecogni-
tion module and to the PulseMonitor. The ActivityRecog-
nition consumes AccelerationEvents and produces Activi-
tyEvents after performing the activity detection described
in the next sections. Upon receiving a HeartRateEvent, the
PulseMonitor performs a simple algorithm to check whether
the current heart rate matches with the last series of Activ-
ityEvents. If the current heart rate is above or below an
activity-specific threshold, an alarm is triggered. A Calo-
rieExpenditure module performs calorie calculations based
on incoming HeartRateEvents and user specific parameters
such as age, weight, and gender. Events produced by mod-
ules are always sent to the EventHandler which then for-
wards them to subscribed event consumers (modules). The
SQLite database is used for logging.

An interesting property of our architecture is that mod-

Figure 3: User interface of myHealthAssistant show-
ing current heart rate, calorie expenditure, repeti-
tion count, exercise, and workout details.

ules can be started and stopped during runtime. Further-
more, sensors such as the leg sensor are re-used between
detection modes without user interaction. Having another
module running e.g., the gym exercise detection, means hav-
ing just another event consumer. The EventHandler auto-
matically forwards the leg’s AccelerationEvents to the new
consumer (e.g., gym exercise detection) without any impact
on other event consumers (e.g., the daily activity detection).

Figure 3 shows our application’s user interface including
heart rate, calorie expenditure and gym workout monitor-
ing. The current pulse and calorie expenditure are displayed
on the top, followed by indicators for sensor connectivity on
the left side and the current repetition count on the right
side. A picture and the name of the current activity are
sketched below this. On the lower half of the screen, work-
out information, such as finished sets, performed repetitions,
and remaining exercises, is displayed.

The next two sections describe and evaluate the different
granularities of fitness activity detection in detail.

4. DAILY ACTIVITIES
For monitoring a user’s daily activity level, a simple dis-

tinction is made between being idle (e.g., sitting, standing),
doing moderate movements (e.g., walking, cycling) and do-
ing sports (e.g., running). The detected activity is then cor-
related with the user’s current heart rate. If the heart rate
does not fit to the current activity, an alarm is sent which
provides a basic patient monitoring functionality. Show-
ing the calorie expenditure already gives feedback about the
level of physical activity.

4.1 Experiment Setup
For the activity recognition, we use a three-dimensional

accelerometer attached above the right knee (cp. Figure
1 (a)). The sensor samples with a frequency of 100Hz and
sends Bluetooth packets including the variances and mean
values of the last 100 readings per axis every second. The
low sending frequency was chosen in order to save energy.
For the training data we collected for each walking, running,
and cycling 120 data samples and for each sitting and stand-
ing 18 data samples from a male subject (age: 28 years,
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Figure 4: Stress-testing the daily activity recogni-
tion: Accuracy for different speeds, showing the re-
gions where the activities are reliably detected.

height: 1.80m, weight: 67kg). Based on these samples of
mean and variance values for each axis, we modeled the six-
dimensional Gaussian distribution for each class and use this
information for the activity detection directly on the phone.
The closest distance to one of these classes of an incoming
sample decides on the current activity. Based on this, we
achieve the highly accurate recognition for the same subject
as suggested by previous work [9, 8, 13].

4.2 Subject-dependent Evaluation
To evaluate the limitations of the proposed system, it is

important to know in which ranges (e.g., speed) of a given
activity the system still recognizes the correct activity and
at which points it tends to fail. Therefore, we stress-tested
our system with different walking and running speeds as
well as different pedaling speeds for cycling. The tests were
done with the same subject as for the training data. Fig-
ure 4 depicts the results for walking/running performed on
a treadmill. The solid line shows the recognition accuracy
for walking. For a very slow walking speed of 1 km/h the
system does not detect walking properly since the move-
ments are too slow. Only a recognition accuracy of 22% is
achieved and in most cases the detected activity was ”stand-
ing”. By accelerating the walking to a more realistic speed
the accuracy increases very fast (76% for 1.5km/h and 99%
for 2.0km/h). In a range between 2.5km/h and 6.5km/h
the activity ”walking” was always detected correctly. With
a very fast walking speed of 7km/h the accuracy dropped
again. The dashed line shows the results for running. In this
case, we started with 5.5km/h and an accuracy of 40%. At a
speed of 6.0km/h the algorithm already achieved 96% of ac-
curacy and reached 100% accuracy with a speed of 6.5km/h.
We stopped the test at 13.0km/h with still 100% recogni-
tion accuracy. Figure 4 shows the results for cycling. The
algorithm needs at least a pedaling speed of forty rounds per
minute in order to reach a 100% accuracy and drops above
a speed of one hundred rounds per minute.

Our tests have shown that the activity detection is robust
even if the activities are performed in other speed ranges
than they were trained for. In addition to indoor treadmill
tests, the subject performed several outdoor runs as well,
with similar recognition results: The figures show that the
detection is accurate for realistic walking, running, or cycling
speed. Since these tests were done by the same subject as for
the training data, we will now test for subject-independency.

4.3 Subject-independent Evaluation
Ideally, an activity recognition system for preventive care

or fitness applications is deployable without any additional
training procedures. We therefore tested the performance of

Subject Gender Age Weight Height

1 female 52 70kg 1.65m

2 female 22 55kg 1.66m

3 female 22 72kg 1.66m

4 male 53 85kg 1.78m

5 male 28 82kg 1.70m

6 male 24 76kg 1.88m

Table 1: Details on the group of test subjects used
in the evaluation. Extra care was taken to have a
wide variety in especially age and fitness.

walking running cycling standing sitting

walking 3208 1 1 0 0

running 0 3094 12 0 0

cycling 0 0 2938 0 0

standing 0 0 0 3120 0

sitting 0 0 1 0 3290

acc. 100% 99.9% 99.5% 100% 100%

Table 2: The confusion matrix and accuracies for
subject-independent recognition.

our system for subject-independency. The chosen subjects
vary in age, height, weight and gender (cp. Table 1) and ev-
ery subject differs at least in one factor from the person used
for the training data (male, 28, 67kg, 1.80m). Every subject
was doing the exercises in three different speeds (4 minutes
each). They had to cycle with 70, 80, and 90 rounds per
minute and to walk with 3.0, 4.0, and 5.0 km/h. For run-
ning they could choose their own three speed levels whereas
levels between 7.0 and 10.0 km/h were chosen. Sitting and
standing were not varied, as they were detected correctly.

Table 2 shows the results of the cross test. For all sub-
jects, walking was detected with an accuracy of 100%, run-
ning had one outlier and cycling had 14 outliers with still
more than 99% of detection accuracy. Those results show
that the activity recognition is very reliable and does not
need a person-specific training.

5. GYM EXERCISES
The previous section has shown that our application can

handle coarse-grained activity recognition robustly on daily
data, using a dedicated accelerometer and a heart rate mon-
itor connected to a phone as a basic setup. This is sufficient
for monitoring the user’s overall daily activity behaviors, but
more activities and specific information is desired for specific
workouts: In this section we like to demonstrate that our ar-
chitecture also copes with more complex BSNs at run-time,
and that seamless BSN configuration changes are supported
in the detection as well. A second workout mode is intro-
duced for a more fine-grained workout diary. In this mode, a
separate activity recognition module distinguishes between
16 activities: 5 cardio exercises and 11 weight lifting exer-
cises shown in Table 3. In addition to this, more detailed
activity information is given as a counting algorithm detects
and counts single repetitions of each weight lifting exercise.

5.1 Exercise Recognition
For the detection of 16 gym workout exercises, the same

Gaussian model-based classifier and platform as for the daily
activity detection is used, with the only difference being
that two more dedicated accelerometers are assumed to be
present, to make it easier for the model to distinguish be-
tween the exercises: One sensor is attached to a sensor strap
around the torso, and a second sensor is attached to the right
weight lifting glove (cp. Figure 1 (b)). By embedding the



Exercise Posture Type

1 Walking

- Cardio
2 Running
3 Cycling
4 Rowing
5 Elliptical trainer

6 Wide grip lat pulldown Sitting
Back7 Barbell rear delt row Standing

8 Hyperextensions Standing

9 Barbell bench press Lying
Chest

a Butterfly Sitting

b Front barbell raise Standing
Shoulders

c Dumbell lateral raise Sitting

d Barbell curl
Standing Arms

e Cable triceps extensions

f Barbell squat Standing Legs

g Table top crunch Lying Abs

Table 3: The set of 16 gym exercises consists of 5
cardio workouts and 11 weight lifting exercises.

mean

variance

peak
detection

100 Hz

?

normal

fast

state counting

peak counting

1 Hz

SQL

Sensor PhoneBAN

raw data

Figure 5: Data flow from raw data on the accelerom-
eter to counting exercise repetitions on the phone.

sensors into the weight lifting outfit, the sensors are always
located at the same position and no additional straps are
needed. As before, every sensor transmits the mean and
variance for each acceleration axis per second, expanding
the total input data space for the Gaussian models from six
to eighteen dimensions for exercise recognition.

The exercise activities shown in Table 3 consist of 5 pop-
ular cardio workouts and 11 popular weight lifting exercises
for training the chest, back, shoulders, arms, abs, and legs.
The selection of exercises were chosen to provide a realis-
tic and varied full-body workout set that regular gym users
would perform. The execution of the exercises, especially
their typical speed, is expected to be subject-dependent, so
on-line training of the Gaussian models was implemented
within the application. All results in this section will there-
fore also come from person-dependent evaluation.

The evaluation of the gym exercises detection was done
in five runs in an actual gym environment. The extended
BSN of smartphone, basic accelerometer sensor, and the
two gym-specific sensors embedded in glove and torso-strap,
were used for both the capturing of the training data, as well
as the classification in real-time for the trained setup. Every
exercise was performed for about 45 seconds and recognized
amidst regular background data.

5.2 Exercise Counting
Previous work [1, 2] has identified the detection of weights

and the counting of repetitions for weight lifting exercises as
an important feature in a gym diary. For the amount of
weights, the authors of [1] propose an RFID-weight map-
ping utilizing RFID tags on the weights and a glove with
an RFID reader. The glove can send Bluetooth packets in-
cluding the recognized tags to the phone which then could
use the mapping for the weight calculations. In this paper,
we are only focusing on the number of repetitions and leave
the weight calculations as an interesting expansion of this
project in the future.

For the counting of the exercises, a two-layer approach
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Figure 6: The 1Hz mean acceleration values from
barbell curls in (a) normal workout speed and (b)
very fast workout speed.

was followed, depending on the subject’s speed of perform-
ing the exercises. This is a necessity since the 1Hz commu-
nication between inertial sensors and the smartphone might
become too slow to count repetitions of faster exercises (such
as those performed with lighter weights). We cope with this
by detecting the workout speed, and switch to peak detec-
tion on the inertial sensor boards for counting the exercise
repetitions. For normal workouts, however, the mean val-
ues that the inertial sensors are sending by default can be
re-used for the counting.

5.2.1 Exercise Counting on Phone
Visual inspection (see Figure 6) of the wrist’s mean val-

ues sent every second by the sensors indicates that straight-
forward autocorrelation on the variance-dominant axis is
sufficient for calculating the number of repetitions for those
workouts that were done slowly. Figure 6 (a) depicts for in-
stance the mean values of the wrist sensor for barbell curls:
The number of peaks in the y axis shown in the middle sec-
tion of the plot matches exactly the 15 repetitions the test
subject did. In particular, the exercise state counting mod-
ule on the smartphone calculates the dominant axis, and
measures through autocorrelation and variance on the axis
with the most dominant variance the number of repeating
states as soon as a new exercise has started, in real time.

Some exercises, however, can be executed in a higher
tempo, which inadvertently leads to missed counts as is il-
lustrated in Figure 6 (b). This has led to an implementation
of a similar peak detection algorithm on the inertial sensors
themselves, as explained in the next section.

5.2.2 On-Sensor Peak Detection
The exercises presented thus far were done in a usual

workout speed, taking on average approximately three sec-
onds per repetition depending on the exercise. In certain
conditions, people tend to do their exercises in an accel-
erated pace, causing the system that was discussed in the
previous section to miss counts. To remedy this issue, the
inertial wireless sensor module is extended to preprocess not
only the mean and variance per second, but also a basic peak
detection, as depicted on the left side of Figure 5 and related
to the technique presented in [1].

An alternative solution would be to increase the fre-
quency at which the inertial sensors report mean and vari-
ance to the smartphone. As our data shows that the faster
exercises tend to repeat themselves between 1.5 and 3 sec-
onds, this would mean doubling or tripling the 1Hz sensor
messages. This would however influence the power consump-



tion of the whole system to deal with the increased commu-
nication speed, as well as cause a significant rise in data
processing on the smartphone.

The sensor-based peak detection is done per axis and
works as follows: A low pass filter of size five is applied on
the last one hundred acceleration samples (which equals the
one second time window) in order to filter out small vari-
ations that would cause tiny peaks to be reported. Then,
peak detection is done on this filtered data by finding local
maxima and minima over the last second. The two most
pronounced peaks found per axis are then piggybacked on
the packet carrying the mean and variance values of the
wrist sensor. Thus, instead of being able to detect a repeti-
tion lasting at least 2 seconds by using the mean value, this
process allows to detect recurring patterns over at least 1
second, using solely the most prominent peaks.

On the smartphone side, the peak counting module has
to first decide whether one of these six values (two per axis)
was significant for a finished repetition. For this, two pa-
rameters are important: 1) the dominant peak axis, and 2)
a peak threshold characterizing a significant peak. In or-
der to find these training parameters at runtime, a routine
was designed that works completely unsupervised (i.e., the
wearer just needs to provide the exercise at training, but
without the counts): The dominant peak axis is character-
ized by the highest absolute sum of peaks outside the band of
medians. In order to find the peak threshold, the peak sam-
ples from the dominant axis are clustered into two clusters
using kmeans: From the typical speeds, one resulting cluster
will describe the non-characteristic values close to zero, and
the other cluster will describe values closer to the character-
istic peaks. The value between the median of both clusters’
codebook vectors is then defined as the threshold. As soon
as both the dominant peak axis and its threshold per axis
are found, the peak counting module is able to estimate the
faster workout speeds as well.

5.3 Evaluation
1 2 3 4 5 6 7 8 9 a b c d e f g

1 156

2 210

3 211

4 41 176 42 42 42

5 3 210 1 8 42

6 168

7 210

8 168

9 206

a 12 211

b 210

c 210

d 210

e 21 119 30

f 1 6 163

g 9 167

Table 4: Confusion matrix for recognition of the 16
gym-specific exercises (cfr Table 3). Overall preci-
sion and recall are on average 92% respectively 95%.

Table 4 displays the raw classification results in a ma-
trix showing the inter-class confusion, for subject-dependent
training. Classification accuracy ranges from 71% for the
standing front barbell raise (labeled e), which is frequently
confused with activities 4 and f, to an almost 100% accuracy
for 9 of the activities. For this evaluation, false classifica-
tions at the start and end of the exercises were minimized
by ignoring the first and last seconds per exercise (i.e., not
classifying them as exercise class or background class). This
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Figure 7: Average error in mis-counts for the count-
ing algorithm, for both normal execution speed (in
black) and fast ones (in gray).

method for discarding borderline data was also implicitly
applied in the training process, where the system waits for
3 seconds after the user presses the training button on the
smartphone’s screen to start the collection of training data.

The evaluation of the sensor-based peak detection was
done in MATLAB, using the accelerometer sensors with em-
bedded peak detection during a speed-up workout set from
the same subject on another day. The result of this unsu-
pervised algorithm is a miscount rate of 12.12%. We believe
that this is still sufficient since a proper workout should be
done more slowly.

Using the normal workout speed counting algorithm for
a second training set resulted in four miscounts on the whole
set of exercises and an overall miscount rate of 2.42%. The
second training set was done by the same subject but on an-
other day. Figure 7 shows the average results per exercise in
case of normal and speed-up performance. The decision on
which counting approach should be used for a given exercise
is done in real-time based on the current variances.

6. SYSTEM EVALUATION
The entire system, with phone and sensors, lasts under

realistic conditions (the phone being used frequently, all sen-
sors turned on) for at least 12 hours of activity and heart
rate monitoring without a recharge. This is enough time for
monitoring a person during the day and charging the system
at night. In future, this can be expected to improve, as the
system is not limited to Bluetooth and more power-efficient
protocols exist, to which our system can easily be adapted.

Figure 8 shows a day-long test of daily activity and heart
rate monitoring. It also shows some unusual positive and
negative peaks. The negative peaks were resulting from a
too dry contact between the sensor strap and the skin which
can be resolved by moistening the strap. For the high peaks,
we have not found a proper solution so far. Usually the
heart rate returned to the actual value after some seconds.
In our application, the PulseMonitor compares the heart
rate against an overall range of healthy heart rate values.
Since the peak values in Figure 8 were outside these ranges,
the PulseMonitor triggered a ”dangerous heart rate” alarm
and, hence, informed us about the sensor malfunction.

For gym exercise recognition, sensors have to be attached
to three positions on a subject’s body (cp. Figure 1 (b)).
The heart rate sensor together with one accelerometer is
attached to the chest. Since the heart rate sensor’s strap is
very comfortable and both sensors are small, these sensors
are unobtrusive and attaching them is easy to do. The wrist
sensor is combined with a weight lifting glove which makes it
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Figure 8: Visualization of the data captured by the BSN system on the phone: detected activities and heart
rate values during one of the day-long tests.

also easy to attach. Only attaching the leg’s accelerometer
happened to be slightly difficult for subjects because it is
not clear were the sensor has to be. This could be solved by
labeling the strap with left/right indicators and showing a
sketch illustrating an attached sensor. Once we had shown
how to attach the leg’s sensors, attaching it was no more a
problem. Some subjects had the problem that the strap was
slipping during the cardio exercises, especially during a run.
For future tests we will try a dimpled rubber strap in order
to avoid slipping. Overall, attaching the sensors was fairly
easy and readjustments were not necessary.

Despite the peaks from the heart rate sensor, our system
worked quite reliably. Only during the long-term tests, the
leg’s accelerometer disconnected once or twice. Until now
the system simply informs us about the disconnection. For
future work, we will implement an automated reconnecting.
Except for the long-term test, there were no Bluetooth dis-
connections during our tests.

From an end-user’s point of view, the system seemed to
be easy and intuitive to use. Except for the leg’s accelerom-
eter, the sensors are unobtrusive and wearing the system in
a gym did not attract attention.

7. CONCLUSIONS AND FUTURE WORK
Many (preventive) health care applications require con-

tinuous monitoring of patient’s physiological and physical
parameters. A body sensor network consists of body-worn
sensors that allow monitoring a patient’s parameters in real-
time and therefore fits to those requirements. We presented
a fitness diary that captures a person’s heart rate, calorie ex-
penditure, daily activities, as well as specific gym exercises.
This preventive health care application intends to motivate
patients to increase their level of physical activity and to
decrease the risk of disabling health conditions.

The contribution of this work is a fitness diary that
adapts to the given detection requirements. By wearing
different sets of sensors at different occasions, the recog-
nition system switches between detection of daily activities
and specific gym exercises, and in addition to this counts
the gym exercises’ repetitions. Its underlying event-driven
middleware supports a seamless switching between sensor
configurations. The application’s recognition performance
matches that of state-of-the-art methods, while being capa-
ble of a reliable day-long activity and heart rate monitoring
with real-time feedback to the user.

For future work, we will continue evaluating the gym
exercise detection for extended use by expert users. We also
plan to integrate uploading of the completed workout to a
social platform in order to increase the user’s motivation. In
addition to this, the usage of activity information increases
the precision of the calorie expenditure calculations.
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