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ABSTRACT
Many users are confronted multiple times daily with the choice
of whether to take the stairs or the elevator. Whereas taking the
stairs could be beneficial for cardiovascular health and wellness,
taking the elevator might be more convenient but it also consumes
energy. By precisely tracking and boosting users’ stairs and eleva-
tor usage through their wearable, users might gain health insights
and motivation, encouraging a healthy lifestyle and lowering the
risk of sedentary-related health problems. This research describes
a new exploratory dataset, to examine the patterns and behaviors
related to using stairs and lifts. We collected data from 20 partic-
ipants while climbing and descending stairs and taking a lift in a
variety of scenarios. The aim is to provide insights and demonstrate
the practicality of using wearable sensor data for such a scenario.
Our collected dataset was used to train and test a Random Forest
machine learning model, and the results show that our method
is highly accurate at classifying stair and lift operations with an
accuracy of 87.61% and a multi-class weighted F1-score of 87.56%
over 8-second time windows. Furthermore, we investigate the effect
of various types of sensors and data attributes on the model’s per-
formance. Our findings show that combining inertial and pressure
sensors yields a viable solution for real-time activity detection.

CCS CONCEPTS
• Human-centered computing → Ubiquitous computing; •
Computing methodologies → Machine learning; • Hardware
→ Sensor applications and deployments.

KEYWORDS
real-time activity recognition, wearable inertial sensing, barometric
pressure sensing, stairs and lift taking detection

1 INTRODUCTION
The proliferation of wearable technology in recent years has sig-
nificantly transformed how we monitor and understand human
physical activities. Wearable devices, equipped with a variety of
sensors, have emerged as pivotal tools in numerous fields including
health monitoring, fitness tracking, and medical diagnostics [10, 14].
Activity recognition, a key application of wearable technology, in-
volves the identification and classification of various physical ac-
tions performed by an individual, such as walking, running, sitting,

∗The first five authors made equal contributions to this research.

or in our case more complex activities like climbing stairs or using
an elevator [4, 16].

Differentiating between activities such as stair climbing and
lift use is especially important since each activity places different
physiological and bio-mechanical demands on the body [12]. Stair
climbing is a physically challenging activity that can yield useful
information on cardiovascular health, lower body strength, and
overall mobility. It is also connected with a high caloric expendi-
ture, making it an important exercise to track in fitness and weight
control settings [3, 6]. In contrast, using an elevator indicates sta-
tionary behavior, emphasizing times of immobility that are critical
to understanding overall activity patterns and such behavior [18].

The use of pressure sensors in wearable electronics provides a
precise and effective approach for capturing the finer details of these
actions. Pressure sensors detect differences in pressure at different
positions or in various situations, providing extensive information
on an individual’s gait and posture [8]. For example, the pattern
of pressure changes while ascending stairs differs significantly
from the pressure change while standing still in an elevator. Using
these sensors, we can improve the accuracy of activity recognition,
allowing us to distinguish between the energy demands of stair
climbing and the passive nature of the elevator use.

The ability to accurately recognize and differentiate various
activities offers profound implications across multiple domains.
In personalized healthcare, it enables tailored interventions and
monitoring, enhancing treatment plans and preventive care [24].
Additionally, In the context of elderly care, detecting the specific
activity of stair climbing versus elevator use becomes critical in
ensuring safety. Many older adults are at a higher risk of falls when
ascending or descending stairs, and timely detection of stair use
can help caregivers monitor and prevent potential accidents or of-
fer immediate assistance when needed[7]. In this way, monitoring
specific activities can contribute to safer and more secure living
environments for vulnerable populations. In the fitness industry,
these technologies allow for more customized exercise plans and
real-time feedback on performance, aiding in achieving personal
fitness goals [20]. Furthermore, In workplace ergonomics and occu-
pational health, recognizing whether employees are using stairs or
elevators can assist in designing more efficient movement patterns
within the workplace. Employers can encourage healthier habits
such as stair climbing, which can reduce sedentary behavior, im-
prove cardiovascular health, and enhance overall well-being among
workers[9]. Additionally, analyzing activity patterns can help as-
sess whether employees are adhering to ergonomic safety protocols,
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potentially reducing the risk of workplace injuries associated with
improper movements or excessive inactivity.

Our dataset1 and this paper’s preliminary experiments offer
several contributions:

• Introduction of a stairs and lift taking dataset: We present
a dataset specifically dedicated to distinguishing between
lift usage and stair climbing with multiple sensors and a
high variability between participants.

• Characterization of barometric pressure sensor data: We
provide a proof of concept for the application of pressure
sensor data in activity recognition.

• Examination of Window Size for Time-Series Data: We
investigate the impact of various window sizes on the pre-
processing of time-series data.

• Feature Importance Analysis: We analyze the importance of
different features, highlighting the critical role of pressure
measurements in accurately classifying activities.

2 RELATED TECHNOLOGIES
2.1 Sensors
The field of activity recognition using wearable technology has
seen significant advancements due to the integration of various
sensor technologies and data analysis techniques [25]. In our study,
we utilized accelerometer and barometer sensors to capture the
necessary data for activity recognition. The accelerometer measures
the acceleration forces acting on the device, providing detailed
information about movement and orientation. The barometer, on
the other hand, measures atmospheric pressure, which can be useful
in detecting changes in elevation, such as when a person uses stairs
or an elevator [15].

2.2 State of the art and limitations
The development and validation of activity recognition systems
have heavily relied on various publicly available datasets. These
datasets contain sensor data collected from wearable devices, which
were placed on participant’s bodies and recorded during different
physical activities. The datasets are crucial for training and evalu-
ating machine learning models. This section reviews some of the
most commonly used datasets in the field that include stair usage,
highlighting their contributions.

Among the prominent datasets, the UCI HAR [2] dataset in-
cludes activities such as "walking upstairs" and "walking down-
stairs" performed by participants wearing smartphones on their
waists. Similarly, the PAMAP2 [17] dataset captures a range of
activities including "ascending stairs" and "descending stairs" us-
ing multiple sensors placed on participants’ bodies. The MHealth
dataset [5] also includes "climbing stairs" along with other physi-
cal exercises. Table ?? lists some of the public activity recognition
datasets that contain “stairs” as one of their activities. The table also
includes information about the recorded sensors and the overall
size of the datasets mentioned.

None of the datasets we examined that included stair usage in-
volved the activity of taking lifts. Furthermore, to our knowledge,

1Both the code and data (raw and resampled form) for the project are publicly accessible
on GitHub: https://github.com/iiMox/project_work_stairs_lift_detection.git

there are no datasets that specifically involve the activity of us-
ing lifts. There are also devices like “Fitbit” that can detect if you
are taking the stairs [19], using sensors such as altimeters to mea-
sure elevation changes. However, these devices do not focus on
differentiating between the usage of lifts and stairs specifically, and
user reports [1, 21] indicate that they cannot reliably detect the
difference between lifts and stairs.

In addition to these datasets, other related works pursue the same
goal of promoting healthy living through wearable technology. For
instance, Neves et al. [11] explore the use of wireless sensor net-
works to monitor health metrics and encourage healthier behaviors.
Similarly, Ohtaki et al. [13] developed a system that automatically
classifies ambulatory movements and estimates energy consump-
tion using accelerometers and a barometer. Although these studies
do not focus on differentiating between lift and stair usage, they
contribute to the broader objective of using wearable devices and
sensor technologies to enhance health by monitoring physical ac-
tivity and energy expenditure, aligning closely with our study’s
focus on leveraging sensor technology for health promotion.

Our study, therefore, aims to fill this gap by providing extensive
sensor data from participants specifically using lifts and stairs.

Our focus is on capturing the use of lifts and stairs, and not just
having incidental usage. Our study, therefore, aims to fill this gap by
providing extensive sensor data from a larger cohort of participants
specifically using lifts and stairs. This level of detail and focus on
lift versus stair usage is not comprehensively covered by existing
datasets, making our publicly available dataset the first with this
focus.

3 DATA COLLECTION & ANALYSIS
A total of 20 participants were involved in the data collection pro-
cess. These participants varied in age (26.0 ± 10.75), gender (10 male
and 10 female), and physical fitness levels to ensure a diverse dataset
that reflects different human movement patterns. Prior to participa-
tion, each individual signed a consent form, acknowledging their
voluntary involvement and understanding of the experiment’s pro-
cedures and objectives. Additionally, we submitted a detailed pro-
posal to The Council for Ethics in Research (Ethics Council) of
the University of Siegen, which reviewed and approved the study,
allowing us to proceed with the experiment. The data was gathered
using the Bangle.js 2 smartwatch, which is equipped with both
accelerometer and barometer sensors. The accelerometer measures
the acceleration forces acting on the device in three-dimensional
space, while the barometer provides data on atmospheric pressure,
which can be used to infer altitude changes.

3.1 Data-collection Procedure
The experiment was conducted in a university building that com-
prises a total of eight floors that can be switched between by either
flights of stairs or a set of elevators. This environment was chosen
due to its accessibility and the availability of both stairs and eleva-
tors. To ensure variability and reduce systematic bias, we employed
randomization in our experiment in several ways:

• The next floor for each participant to visit was determined
by a random number generator, ensuring an unpredictable

https://github.com/iiMox/project_work_stairs_lift_detection.git
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Dataset Activities Stairs Lift Users Sensors used Size of dataset
UCI HAR (Human
Activity Recognition
Using Smartphones)
[2]

Walking, Walking Upstairs,
Walking Downstairs, Sitting,
Standing, Laying

Yes No 30 Accelerometer, Gyroscope
10,299 Observa-
tions (Each 2.56
seconds)

PAMAP2 (Physical
Activity Monitoring)
[17]

18 total - basic, household, and
exercise activities Yes No 9

Accelerometer, Gyroscope,
Magnetometer, Heart Rate
Monitoring

About 10 hours
(IMU data: 100 Hz
Heart rate data: 9
Hz)

WISDM [22, 23]

18 total - ambulation-related ac-
tivities, hand-based activities of
daily living, and various eating
activities

Yes No 51 Accelerometer, Gyroscope 2754 minutes

MHealth [5] 12 total - Basic, Locomotion,
and exercise activities Yes No 10

Accelerometer, Gyroscope,
Magnetometer, Electrocar-
diogram (heart monitoring)

Not specified

Ours
Walking Upstairs, Walking
Downstairs, Lift up, Lift down,
Null

Yes Yes 20 Accelerometer, Barometer 525.02 minutes
(50 Hz)

Table 1: State-of-the-art datasets that are related to activity recognition and contain going up or down the stairs as an activity.
The datasets differ in the contained activities, numbers of participants, and sensors used, as well as in their sizes. Our newly
created dataset is the only available dataset that includes taking the lift as an activity and uses a barometric pressure sensor.

sequence of floor visits. The floor from which the experi-
ment would be started was also determined by the random
number generator. Since the university building that we
used has floors numbered from 2 (first accessible floor) to 8
(last accessible floor), our random number generator had
been set to produce the lowest possible random number 2
and the highest possible random number 8.

• The choice between using the elevator or stairs for each
transition was decided by a coin toss, ensuring an impartial
probability of selecting either mode of movement.

• The participants were advised to act normal and try differ-
ent variations of activities that they would ideally do while
performing the movement of taking the stairs or taking the
Lifts. Some participants chose to carry a handbag or a set
of books with them, while others used their phones while
taking the lifts or stairs. The participants were encouraged
to do the experiment at their own pace and with their own
choice of effort level. These variations of the different hand
movements that the participants did while participating in
the experiment were recorded using the accelerometer.

Each participant was instructed to wear the Bangle.js 2 smart-
watch throughout the experiment. They were guided to move be-
tween floors based on the outcomes of the random number gen-
erator and the coin toss. The smartwatch continuously recorded
accelerometer and barometer data during these activities at a fre-
quency of 50 Hz. For each participant, the experiment was con-
ducted over a period of approximately 30 minutes. Participants
were given adequate breaks between movements to ensure they
were not fatigued, which could affect the naturalness of their move-
ments. The data collection sessions were scheduled to avoid peak
hours in the building, minimizing external disruptions and ensuring
safety.

Each participant was accompanied by four researchers, each one
of these four were responsible for one of these tasks:

(1) Video recording the participant’s complete physique for
the entire duration of the experiment.

(2) Annotating the changes in the events that are taking place,
classifying them into the 5 classes, and also noting down
the time when this change took place.

(3) Generating a random number to decide which floor to go
to next.

(4) Tossing the coin to decide whether to take the stairs or the
lift to this floor.

During the data annotation phase, using the video recordings and
based on the context data from the annotation data files, class labels
were manually added to the sensor data CSV (Comma-Separated
Values) files as ground truth for the experiment.

3.2 Activity Classes
The dataset was categorized into five distinct classes:

• Null: Periods in which none of the target activities was
performed, includes idleness (such as sitting, standing still,
walking, or pacing).

• Lift Up: Movement of participants using the elevator to
ascend floors.

• Lift Down: Movement of participants using the elevator
to descend floors.

• Stairs Up: Movement of participants using the stairs to
ascend floors.

• Stairs Down: Movement of participants using the stairs to
descend floors.

We gathered a total of 525 minutes (8:45h) of data from the par-
ticipants. The distribution of this data among the five classes can
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Null
52.0%

Lift Down
14.8%

Stairs Down
11.3%

Stairs Up
7.6%

Lift Up
14.4%

Total Time Of Each Class

Figure 1: The distribution of the activity classes contained
in the recorded dataset. The Null class makes up 52%, while
the rest of the data consists of the four target classes (Lift Up,
Lift Down, Stairs Up, Stairs Down).

be seen in Figure 1. The exact duration of each class in minutes is
given in appendix D table 5.

3.3 Analysis
3.3.1 Sensor Data: The sensor data contains detailed information
about the movement and pressure measurements taken at various
time intervals. This data is evaluated to better comprehend move-
ment patterns, acceleration variations, and possible activities or
behaviors.

• Time: The timestamp indicating the time at which the data
was recorded.

• Timestamp: A numerical representation of time, in millisec-
onds.

• X, Y, Z: Accelerometer data representing the acceleration
along the X, Y, and Z axes, respectively.

• Magnitude: Magnitude of the acceleration vector.
• Pressure: Pressure data.
• Label: Ground truth label for the data. One of: Stairs Up,

Stairs down, Lift up, Lift down & Null.

3.3.2 Annotation Data: The annotation data adds context to sensor
data by designating specific time points as events or activities. This
annotation can help segment or categorize sensor data based on
various activities.

• Elapsedtime: The elapsed time since the start of the record-
ing.

• Comment: Annotations or labels provided at specific time
points, such as "Lift down", "Stairs up", etc.

During the initial study of the sensor data, it was discovered that
the annotation for "Lift" occurrences was completely dependent
on the user entering the lift. However, it became clear that this
approach did not accurately represent the user’s experience because
the lift may remain stationary for an extended amount of time
before moving. This difference resulted in an erroneous portrayal
of lift utilization in the data.

To address this issue and ensure the lift data’s accuracy, it was
decided to manually annotate certain data points within the sensor
data that corresponded to lift occurrences. This manual annotation
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Figure 2: Example accelerometer and barometer data for the
’Stairs Up’ activity class. The accelerometer shows the typical
patterns of walking. Meanwhile, the pressure steadily de-
creases, with short plateaus occurring on the stairway’s land-
ings. Additionally, the pressure sensor shows some spikes
which are likely caused by the movement of the arm while
walking.
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Figure 3: Example accelerometer and barometer data for the
’Lift Up’ activity class. While the lift is moving, the partici-
pant mostly stood still. We observe the pressure decreasing
smoothly.

entailed carefully studying the sensor data and determining the
exact instant when the lift began moving.

4 DATASET VALIDATION & PREDICTION
ALGORITHM

When constructing a detection algorithm for evaluating sensor data,
both the data separation method and the detection algorithm selec-
tion were carefully considered. To evaluate the collected dataset, a
random forest classifier (from scikit-learn.ensemble libraries) has
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Figure 4: Example accelerometer and barometer data for the
’Stairs Down’ activity class. The accelerometer shows a lot
of activity, with similar walking patterns as in ’Stairs Up’.
In direct comparison, the magnitude and frequency of the
movement sensors seem higher. The barometer detects the
steadily rising pressure, also interrupted by short plateaus
caused by the landings.
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Figure 5: Example accelerometer and barometer data for the
’Lift Down’ activity class. The specific participant for this
instance was standing very still during the descent. We can
see the pressure increasing linearly and smoothly.

been chosen as the classification algorithm for this problem. Be-
fore feeding the raw data into the random forest classifier, we are
pre-processing the data to extract features using sliding windows.
We trained and evaluated the model on different window lengths
of 4 and 8 seconds. For each of the windows, we are extracting 26
features from the data and the label is based on majority voting.
During the window creation, windows are discarded if no label is
assigned to at least 80% of the total number of observations within
the window. We also discard windows that are too short or are
missing data, e.g. at the end of a recording.

We use leave-one-participant-out cross-validation to get a subject-
independent performance evaluation. In the prediction algorithm,
the first step involves selecting a participant to serve as the test par-
ticipant, while the remaining 19 participants are used for training
the model. For these 19 participants, various features are computed
as outlined in the data pre-processing stage. These features include
statistical measures such as averages, minimums, maximums, vari-
ances, and standard deviations for accelerometer data (X, Y, Z),
magnitude, and pressure, as well as additional metrics like range,
slope, kurtosis, and skewness.

The class imbalance was addressed using the random oversam-
pling technique, which duplicates randomly selected samples from
the minority classes until all classes have the same number of sam-
ples. The imblearn library has been used to oversample the data
with ’not majority’ as the sampling strategy. This step is meant to
prevent the model from being biased towards the majority class
and to ensure it performs well across all classes. For this proof-of-
concept study, we did not explore the use of undersampling or a
combination of oversampling and undersampling. A more sophisti-
cated sampling technique like SMOTE could improve our model’s
performance further, but was out of the scope of this work.

To optimize the random forest classifier’s performance, a grid
search was conducted to identify the best hyperparameters, specifi-
cally the depth of the trees (max_depth) and the number of trees in
the forest (n_estimators). Grid search involves testing various com-
binations of these hyperparameters to find the combination that
yields the highest performance, in our case based on 10-fold cross-
validation results. We used ’GridSearchCV’ from the scikit-learn
library. With the optimal hyperparameters identified, the random
forest model was trained using the 19 participants in each LOSO
split’s training data.

Finally, for each left-out participant, the trained Random Forest
model was then used to make predictions and evaluate its per-
formance. The model’s performance was evaluated by calculating
the accuracy of its predictions, which measures the proportion of
correctly classified instances out of the total number of instances.
Additionally, we report the F1-score in three modes of multiclass-
averaging (Micro, Macro, Weighted).

To measure the impact of the addition of the pressure sensor
to the data, we performed a small ablation study, repeating the
same training and validation procedure, but without the pressure
data. This enabled us to test the hypothesis, that pressure data
contains viable information to detect stairs and lift usage, but also
to distinguish between these two, as well as their directions (up or
down).

5 RESULTS & DISCUSSION
We show the results of our machine learning experiments in Table
2. The results demonstrate significant performance improvements
when the time-series data is pre-processed using an 8-second win-
dow for feature extraction compared to a 4-second window. The
model’s evaluation metrics, including accuracy and F1 scores, are
notably higher with the 8-second window, reaching a macro F1
score of 0.86 (8s) versus 0.76 (4s). This substantial increase in accu-
racy highlights the importance of selecting an appropriate window
size for pre-processing time-series data, as it can greatly enhance
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the classifier’s ability to understand patterns and make accurate
predictions.

When comparing the performance of a Random Forest model
trained solely on acceleration data (IMU data) to one that incor-
porates both acceleration and pressure data, the results clearly
show that the inclusion of pressure data significantly enhances the
model’s ability to accurately distinguish between stair use and lift
use. Without the barometric sensor, a macro F1-score of only 0.49
was reached. While acceleration data captures the dynamic move-
ment patterns, pressure data can offer insights into altitude changes,
such as those experienced when ascending or descending stairs.
The altitude changes experienced when ascending or descending
stairs are distinct from the relatively constant altitude changes dur-
ing elevator use. For the evaluation metrics of each participant in
both time-windows please refer to our GitHub repository.

Sensors IMU & Press. IMU only
Time-window 8 s 4 s 8 s 4 s

Accuracy 0.88 0.80 0.68 0.65
F1-Score (Micro-Avg) 0.88 0.80 0.68 0.65
F1-Score (Macro-Avg) 0.86 0.76 0.49 0.46
F1-Score (Weighted) 0.88 0.80 0.67 0.63

Table 2: The model evaluation metrics averaged over all 20
participants for 8-second and 4-second time-window. The
results are shown with and without the use of the recorded
pressure data. The columns on the left show results when
IMU and the pressure sensor were used, while the columns
on the right show the results without the pressure data.

Evaluating F1 scores in micro, macro, and weighted modes offers
a comprehensive understanding of the model’s performance across
different aspects of the data, especially when data is imbalanced.
The macro F1 score is particularly informative in scenarios with
class imbalance because it reveals the model’s performance across
each class individually. The weighted F1 score provides a balanced
view that accounts for class imbalance while still reflecting the
overall performance across all classes. The table of complete metrics
for each participant in 8-second and 4-second time windows along
with the best parameter values for max_depth and n_estimators
hyperparameters while fitting random forest classifier can be found
in appendix B. 3 and C.4 respectively.

Figures 6 and Appendix A Figure 7 present the confusion ma-
trix of the model over an 8-second and a 4-second time window
respectively. The confusion matrix offers a detailed breakdown of
the model’s performance by presenting the counts of true positives,
true negatives, false positives, and false negatives for each class. In
Figure 6, we can observe that most prediction mistakes are related
to the null class and that the classes related to taking stairs and
taking the lift are rarely confounded.

In the feature importance analysis conducted across all 26 fea-
tures for each of the 20 participants, it was observed that the fea-
ture "slope_pressure" consistently exhibited the highest importance
score. This finding underscores the significance of pressure values
in effectively distinguishing between the five distinct classes. The
steepness or gradient of pressure changes, as represented by the

Figure 6: Confusion Matrix for 8-second windows. Most pre-
dictions are correct (diagonal of the matrix). We observe that
most mistakes revolve around the null class and that ’stairs’
and ’lift’ can be separated reliably by the model.

slope feature, appears to be particularly informative in differenti-
ating between activities involving changes in elevation, such as
ascending or descending stairs and using lifts. The feature impor-
tance scores of all 26 features are presented in the Appendix E as
Table 6.

Overall, the evaluation of the collected dataset with the explained
methods shows that lift and stair usage can be distinguished and
differentiated from the background class with a sufficiently high
accuracy and F1 score, given the set of wearable sensors.

6 CONCLUSIONS
This paper presents the possibility of differentiating movement into
five different classes with acceleration and pressure readings from
a smartwatch. The feature importance score analysis depicts the
importance of pressure measurement in this particular classification
problem. Barometric measuring is a sensing modality seldom used
in HAR. This work serves as a proof of concept, highlighting the
potential of utilizing pressure data in activity recognition. The
findings indicate that pressure-related features, particularly the
slope of pressure changes, are highly informative for detecting and
classifying different movement patterns related to altitude changes.
This insight could pave the way for more advanced and accurate
activity recognition systems, which have applications in various
applications such as health monitoring, fitness tracking, and smart
home environments.

Furthermore, the effectiveness of different window sizes for pre-
processing time-series data in the context of activity recognition
using a random forest classifier is also investigated. Our findings
highlight once more the critical role of window size selection in
enhancing model performance. This underscores the importance
of capturing more comprehensive temporal information to better
discriminate between activity classes.
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We believe the main contributions of our dataset and this paper’s
experiments are relevant to the Activity Recognition community:

• A dataset dedicated specifically to taking lifts versus taking
stairs detection was collected and annotated

• Our experiment serves as a proof of concept for the use of
barometric air pressure data in Activity Recognition

• We have investigated especially the window size in such
time-series data pre-processing

• We analyzed Feature Importance scores to investigate the
impact of both sensors and features

7 FUTUREWORK & ENHANCEMENTS
The dataset used in this study presents opportunities for further
investigation, particularly in addressing imbalances among the five
activity classes. Despite our efforts to collect data in an unbiased
manner, the inherent variability in participants’ activities has led
to class imbalances. The lifts are faster than the stairs, which is one
of the main reasons for the imbalance in data. In longer and real-
world settings, the data is likely to be even more imbalanced. Future
studies could explore strategies to mitigate this imbalance and to
deal with it both during data collection and real-time inference.

Expanding the dataset size is another avenue for future research.
Currently, data collection occurs within a single building, poten-
tially limiting the generalizability of the model. By collecting data
from diverse environments and settings, including outdoor and
indoor scenarios, we can enhance the model’s ability to generalize
across different contexts. Additionally, increasing the dataset size
by recruiting participants from various demographics and activ-
ity levels can enrich the diversity and representativeness of the
dataset. With a larger dataset, implementing neural networks such
as Long Short-Term Memory (LSTM) or transformer-based net-
works becomes feasible, allowing for the exploration of deep learn-
ing architectures capable of capturing even more complex temporal
dependencies.

Furthermore, the definition of the Null class can be refined to
incorporate a broader range of activities. While the null class pri-
marily represents periods of inactivity, such as standing or sitting,
future studies could consider including additional activities like
cycling, jogging, or walking within this class. This expansion would
provide a more comprehensive representation of daily activities,
thereby improving the model’s performance in real-world settings
where activities may be more diverse and dynamic.
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A CONFUSION MATRIX FOR 4-SECONDS
TIME-WINDOW

Figure 7: Confusion Matrix for 4-second windows.

B EVALUATION METRICS FOR 20
PARTICIPANTS IN 8-SECONDS
TIME-WINDOW

The following table presents evaluation metrics and also suitable
hyper-parameter values for random forest found by GridSearchCV
for each participant in 8-second windows.

No. Acc. macro F1 weighted F1 Depth Est.s
1 0.84 0.83 0.84 None 200
2 0.85 0.82 0.85 None 250
3 0.90 0.89 0.90 None 250
4 0.82 0.81 0.83 15 275
5 0.96 0.94 0.96 15 250
6 0.87 0.86 0.87 20 200
7 0.81 0.79 0.81 15 225
8 0.89 0.80 0.88 20 200
9 0.90 0.87 0.90 None 275
10 0.91 0.85 0.90 20 250
11 0.92 0.91 0.92 None 300
12 0.90 0.90 0.90 20 200
13 0.87 0.87 0.86 20 300
14 0.89 0.88 0.89 None 250
15 0.87 0.87 0.87 15 350
16 0.88 0.89 0.88 None 300
17 0.86 0.82 0.86 None 300
18 0.88 0.89 0.88 20 300
19 0.86 0.79 0.86 20 275
20 0.85 0.84 0.85 20 225

Table 3: The model evaluation metrics (Acc for Accuracy,
Est.s for Estimators) for all 20 participants for 8-second time
windows along with hyperparameter values.

C EVALUATION METRICS FOR 20
PARTICIPANTS IN 4-SECONDS
TIME-WINDOW

The following table presents evaluation metrics and also suitable
hyper-parameter values for random forest found by GridSearchCV
for each participant in 4-second windows.

No. Acc. macro F1 weighted F1 Depth Est.s
1 0.77 0.72 0.77 None 350
2 0.81 0.75 0.80 None 350
3 0.81 0.76 0.81 None 250
4 0.77 0.73 0.78 None 225
5 0.78 0.73 0.78 None 200
6 0.79 0.76 0.79 None 200
7 0.75 0.72 0.76 None 250
8 0.78 0.75 0.77 None 350
9 0.85 0.80 0.84 None 250
10 0.84 0.70 0.83 None 350
11 0.87 0.70 0.83 None 350
11 0.87 0.87 0.87 None 325
12 0.80 0.78 0.80 None 325
13 0.80 0.74 0.79 None 250
14 0.80 0.72 0.80 None 325
15 0.83 0.82 0.83 None 275
16 0.81 0.79 0.81 None 300
17 0.79 0.74 0.79 None 225
18 0.77 0.77 0.77 None 275
19 0.83 0.78 0.83 None 275
20 0.77 0.73 0.76 None 200

Table 4: The model evaluation metrics (Acc for Accuracy,
Est.s for Estimators) for all 20 participants for 4-second time
windows along with hyperparameter values.

D TOTAL TIME DURATION FOR EACH CLASS
IN MINUTES

class Minutes
Lift Down 77.60
Stairs Down 59.20
Stairs Up 39.88
Lift Up 75.36
Null 272.98

Table 5: Duration of data collected for each class in minutes

In total 152.95 minutes of data was collected for the lift classes
and 99.08 minutes of data was collected for the stairs classes.
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E FEATURE-SCORES FOR 26 FEATURES
AVERAGED OVER 20 PARTICIPANTS IN
8-SECONDS AND 4-SECONDS
TIME-WINDOW.

Feature 8-seconds 4-seconds
slope_pressure 0.313075423 0.24633301
var_magnitude 0.084037245 0.079129592
std_magnitude 0.082081804 0.072645593
max_magnitude 0.045221187 0.051749068
std_pressure 0.043930271 0.030623624
var_pressure 0.043276678 0.031141125

min_magnitude 0.036980905 0.032534554
kurtosis_pressure 0.036261681 0.029589955

min_accX 0.027751388 0.028021951
range_pressure 0.02538081 0.025415817

std_accX 0.023843761 0.034228149
var_accX 0.023416437 0.036206354
std_accZ 0.020009935 0.02788877
var_accZ 0.018040161 0.026410733
avg_accX 0.016969519 0.02231106
max_accX 0.016947775 0.022569319

avg_magnitude 0.0169168 0.027153292
skew_pressure 0.015893485 0.019383114

min_accZ 0.015800581 0.020498954
max_accY 0.015392096 0.020042188
std_accY 0.014100437 0.021778705
var_accY 0.01405132 0.021217197
avg_accZ 0.013379868 0.019155533
min_accY 0.013372234 0.017988043
avg_accY 0.012822567 0.017824296
max_accZ 0.011045632 0.018160005

Table 6: Feature scores for all features extracted over 8-
seconds and 4-seconds window
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