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ABSTRACT
Hand washing is a crucial part of personal hygiene. Hand washing
detection is a relevant topic for wearable sensing with applications
in the medical and professional fields. Hand washing detection can
be used to aid workers in complying with hygiene rules. Hand
washing detection using body-worn IMU-based sensor systems has
been shown to be a feasible approach, although, for some reported
results, the specificity of the detection was low, leading to a high
rate of false positives. In this work, we present a novel, open-source
prototype device that additionally includes a humidity, tempera-
ture, and barometric sensor. We contribute a benchmark dataset
of 10 participants and 43 hand-washing events and perform an
evaluation of the sensors’ benefits. Added to that, we outline the
usefulness of the additional sensor in both the annotation pipeline
and the machine learning models. By visual inspection, we show
that especially the humidity sensor registers a strong increase in
the relative humidity during a hand-washing activity. A machine
learning analysis of our data shows that distinct features benefiting
from such relative humidity patterns remain to be identified.

CCS CONCEPTS
• Human-centered computing → Ubiquitous computing; •
Computing methodologies → Machine learning; • Hardware
→ Sensor applications and deployments.

KEYWORDS
multi-modal, hand washing detection, human activity recognition,
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1 INTRODUCTION
Hand washing is very relevant for our personal health because
it effectively reduces the amount of bacteria, viruses, and other
pathogens that we spread [4]. Added to protecting our own health,
effective hand washing can also reduce the spread of illnesses to
other human beings or animals. Many professional applications
require food-safe or sterile environments, for which hand washing
and e.g. alcohol-based hand sanitizers can be used. Automatically
measuring the frequency, duration, and quality of hand washing
therefore could be beneficial in a multitude of applications. There
are also prospective applications in the field of mental health. Hand
washing detection has for instance been proposed as a measure to
aid in the treatment of people with Obsessive Compulsive Disorder
(OCD) with washing compulsions [3, 15, 16].

Spotting hand washing in the real world and distinguishing it
from everyday activities and activities of daily living (ADL) has
been shown to be difficult and inaccurate using only data from

wrist-worn IMU devices. However, additional cues from the en-
vironment such as Bluetooth beacons near sinks can be used to
support the hand washing detection [5, 12]. The current approaches
for hand washing detection employ a multitude of sensors, although
the most frequently used sensors are RGB(D)-cameras and iner-
tial measurement units (IMUs). One category of sensors that has
recently been incorporated in wearable devices remains under-
explored, namely atmospheric sensors which allow the capturing
of humidity, temperature, and air pressure.

Goals and Contributions
The goal of this work is to explore the use of additional sensing
capabilities and their effect on the detection performance of hand
washing detection using wearable devices. The contributions of our
work are the following:

(1) Description of the development and evaluation of an open-
source, cost-effective sensor recording device

(2) Evaluation and comparison of the impact of the added sen-
sors for hand washing detection

(3) Providing an expert-annotated and easy-to-extend dataset
and code to reproduce our results and further develop the
device and hand washing detection methods.

2 RELATEDWORK
In the following section, we discuss existing research work on hand
washing detection and on the usage of atmospheric sensors in Hu-
man Activity Recognition (HAR) in particular. Although several
recent smartwatches do contain cost-effective miniature sensors
such as the Bosch BME280 that sense the humidity of the wearer’s
surroundings, the modality of humidity is not very prevalent in
wearable studies. To the best of the authors’ knowledge, there exists
no previously published research that combines the use of wear-
able atmospheric sensors with the goal of hand washing detection.
In this work, we focus only on body-worn sensors, as externally
placed sensors (e.g. cameras) have several disadvantages for hand
washing detection, such as the need to deploy them in sensitive
environments such as users’ bathrooms, and would need to cover
all possible places where users could possibly wash their hands.

Hand washing detection
For hand washing detection, the most used sensors are inertial
measurement unit (IMU) sensors, which contain inertial 3D sensors
such as accelerometers and gyroscopes. While studies have shown
that these sensors on their own can deliver adequate data to detect
lab-recorded hand washing and hand washing steps [9–11, 17, 18],
no large-scale in-the-wild study exists thus far that can detect hand
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washing from IMU data alone with close-to-perfect precision and
recall [3]. In-lab studies offer higher performance [20].

Hence, additional sensors or cues could offer a way to make the
detection of hand washing more reliable. As an example of popular
technology, the Apple Watch can detect hand washing by allegedly
using a combination of IMU sensing and the microphone with a
proprietary algorithm [7, 8]. Zhuang et al. also employ an acoustic
model [21] for hand washing detection. Added to that, some studies
have used Bluetooth beacons as part of their detection framework
[5, 12]. However, this only makes sense in certain environments
and contexts, in which hand washing should be detected. Similarly
to external sensors, this limitation of beacons holds true for all
kinds of external cues. Another approach is to utilize capacitive
sensing and to make use of the fact that the metallic piping of water
outlets is usually grounded. By measuring the changes in capacitive
resistance, events can be detected when the user has touched the
outlet or is in contact with the water stream coming out of it [19].
However, the assumption that the piping system of wash basins is
grounded might not always hold, as these pipes are increasingly
built out of plastic materials.

In general, high performances with F1-scores of over 0.9 can be
reached [10, 20] both in-lab and out-of-lab. However, differences in
sensing modalities, environmental cues, and activities included in
the datasets make direct comparisons between the existing datasets
unfeasible.

Atmospheric sensors in HAR
Although they are far from omnipresent inHumanActivity Recogni-
tion (HAR), previous HAR research does use ambient environment
sensors such as atmospheric sensors (temperature, pressure, and
humidity sensors). For example, in works by De et al. and Bharti
et al. [2, 6], atmospheric sensors are utilized to enhance the recog-
nition of complex activities of daily living. Similarly, the sensors
are included in a work by Vepakomma et al. [14]. These works
have in common that they aim to recognize multiple activities of
daily living in a living environment ("at home"). By including the
ambient environment sensors and additional Bluetooth beacons in
their data, they add context to the otherwise harder-to-classify IMU
sensor values. They also argue that this sensor type can be used
to do on-body localization of wearable devices. For example, the
ambient pressure measurement on ankle-worn devices is usually
lower compared to wrist-worn devices.

In another research study by Barua et al. [1], the usefulness
of temperature and humidity data is highlighted for the specific
activity of using a bathroom, due to the additional context they
provide. They find that bathrooms usually deliver higher humidity
readings.

Compared to the aforementioned related work, our work simi-
larly uses atmospheric sensors to add context to the IMU recording.
However, we specifically show that the humidity and temperature
do not only add context about the current location of the user or
device but can also be actively employed to directly measure the
specific activity of hand washing.

Figure 1: Overview of thewiring needed to attach the BME280
sensor board. The Puck.js provides power to the sensor which
can be read via I2C using the D1 and D2 pins.

Figure 2: Our prototype consists of a Puck.js with the at-
tached BME280 sensor. A custom 3D-printed enclosure can
be mounted on the wrist using the wristband.

3 RECORDING AND EVALUATION OF
EXAMPLE HANDWASHING DATA

To evaluate the addition of atmospheric sensors, we developed a
prototype. We then recorded data using the prototype in a hand-
washing detection scenario and analyzed the collected data using
visual, statistical, and machine-learning methods.

3.1 Recording device setup
We used for our custom wrist-worn wearable prototype a Puck.js
embedded units and attached additional atmospheric sensors. We
then re-programmed this unit so that it can be used to digitally
acquire the integrated IMU’s sensor values and the additional at-
mospheric sensors’ values. Since the Puck.js has a limited storage
space, we immediately streamed all data to a nearby recording
device via Bluetooth low energy (BLE).

Figure 2 shows our initial design. The Puck.js device is powered
by a 3V cell battery. The battery life of a single 3V cell battery in
our prototype is at least 6 hours, as found per our experiments. In
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the future, a battery with a larger capacity could be attached as the
power source to prolong the battery life and hence increase the
maximum recording duration.

3.2 Example data recording
To evaluate the usefulness of the addition of the different sensors,
we recorded sample data from unscripted hand washes and back-
ground activities. We then visually inspected the recordings and
trained machine learning classifiers with the collected and anno-
tated data. Finally, we compared the models’ performances on differ-
ent sensor subsets to obtain the influence of each sensor’s addition.

We recorded a total of n=10 participants (8m, 2f) for 1 hour per
participant. The participants were recorded over multiple weeks, in
which highly different external outside conditions were met. The
recorded data include recording during sunny and warm days as
well as rainy, moist, and cold days. During the 1 hour recording
period, each participant washed their hands for a set amount of 4
times. There were no instructions given about the order or duration
of hand washing steps, in order not to influence the participants.
To also include background data in the recording period, we also
included some other activities. During the 1 hour period, the par-
ticipants were mostly working at their desks. Some recordings also
include activities of daily living like cooking pasta and folding laun-
dry. Additionally, we asked each participant to take a walk around
the building they were in, which was either an office building or
the building they lived in. The walk was constrained to include
descending and ascending at least two flights of stairs. Other than
this, no further constraints or activities were enforced, so that the
data contain mostly realistic daily activities along with the four
hand-washing instances.

To be able to annotate the recordings as accurately as possible,
we placed a single Puck.js near designated hand-washing sinks to
act as a dedicated BLE beacon. The signals from these beacons were
recorded alongside all the sensor data by the wearable units. The
proximity to the sink is expected to be correlated to the respective
Bluetooth advertisement’s received signal strength indicator (RSSI).
Added to that, the participants were asked to press the button on
the Puck.js device once before starting the hand wash and then
once again after finishing the hand wash. This additional data from
button presses and beacons is only used for the gathering of ground
truth. We restricted the use of beacons to the labeling because to
gather this data, beacons would have to be placed at every sink, the
user would wash their hands at. Similarly, in the real application,
button presses before and after each hand-wash would nullify the
need for automated hand-washing detection, hence the button
presses are also only used for ground truth annotation.

We recorded the sensor data from the integrated and externally
attached sensors as shown in Table 2.

The recorded data was then manually annotated in Label Studio
[13]. For the annotation, the button presses and the proximity values
to the Bluetooth beacons were visualized alongside the IMU sensor
values and the values of the atmospheric sensors. This enabled us
to accurately label the hand-washes.

In addition to recording sensor data, we also noted down the
recording day’s weather conditions for each recording, i.e. mean
temperature, mean relative humidity, condition (rainy, sunny, cloudy),

sensor type axes device sampling frequency
Accelerometer 3 Puck.js 52 Hz
Gyroscope 3 Puck.js 52 Hz
Humidity 1 BME280 1 Hz
Temperature 1 BME280 1 Hz
Atm. Pressure 1 BME280 1 Hz

Table 1: The variety of sensors used for recording data in our
experiment, which are included in the Bosch BME280 sensor
board and the Puck.js sensor board. The latter collects all
sensor readings to be forwarded via Bluetooth Low Energy.

6.48 10.00 15.00 20.00 25.00 30.00 35.00 40.00 44.08
Hand washing duration in s

Figure 3: Statistics for the duration in seconds of all 43
recorded hand washes. The box plot shows the median (red
solid line), mean (green dashed line), quartiles (box extents),
and minimum and maximum (whiskers).

and mean air pressure. We include this meta-information in the
dataset. Overall, we recorded on 6 different days, with rainy to
sunny conditions, temperatures from 13 to 21°C, humidity between
63.5 and 89, and pressure in the range of 996.7 to 1007.7 hPa. How-
ever, since the data was recorded indoors, the outside weather
conditions likely did not impact the results severely. Also, we found
that the readings of the recorded atmospheric sensors are not well-
calibrated, i.e. the absolute values are not always correct. In contrast,
the relative values are reliable, showing similar changes to external
sensors to which we compared them.

3.3 Evaluation of collected data
In total, we collected 43 instances of hand washing. In Fig. 3 we
show the distribution of the hand-washing duration for all hand-
washes contained in the recorded data. The mean (25.19s), median
(26.34s), and the quartiles of the duration of a hand-washing in-
stance are between 20s and 30s. However, the minimum (6.48s) and
the maximum (44.08s) deviate from the mean. In total, the recorded
data has a length of 10 hours and 3.5 minutes. The contained hand
washing has a total duration of 17.85 minutes. Thus, the collected
dataset is highly imbalanced with the null class making up 97 % of
the data. However, we argue that this is a desirable feature of our
dataset, as hand washing is also scarce in the real world, where it
only makes up a tiny percentage of a potential user’s daily activities.

3.4 Visual representation
To inspect the additional sensors’ usefulness for our tasks, we cre-
ated visual representations, which will be shown and discussed in
this chapter.

One example of hand washing is displayed in Fig. 4, which shows
the accelerometer values and the humidity change compared to the
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Figure 4: Example accelerometer and humidity sensor plot of one hand washing (HW in legend) instance. We can observe the
humidity rising once the participant starts washing their hands at time t = 0. Additionally, the signal RSSI received from a
Bluetooth beacon placed at the sink is shown (navy blue). The Beacon signal was only used for labeling and is non-zero while
the participant remained near the sink, e.g. to dry off the hands after washing.

start of hand washing. In the plot, we can observe the participant
walking to the sink, then starting to wash their hands, and then
drying off their hands before finally walking again. The humidity
level rises shortly after the hand washing is started by the partici-
pant, and begins to fall one the tap is turned off and the participant
is drying off the hands.

The humidity change after starting to wash hands is shown in Fig.
5 (a). As expected, the measured humidity begins to increase around
the moment at which the participant starts their handwashing
procedure. The signal then peaks some seconds after the start of
the hand wash, depending on the duration of the hand wash. It can
also be observed that after a hand wash, the sensor values only
slowly decrease again until they reach the same level that they
were at before starting the hand wash. During the hand wash, the
humidity usuallymonotonously rises until the handwash is finished
and the participant starts to dry off their hands. Interestingly, the
humidity already starts to rise before the hand wash is started,
which is probably due to the room in which the sink is located
having a slightly higher humidity in comparison to other rooms,
which would align well with the findings in [1].

The temperature response of washing one’s hands is displayed
in Fig. 5 (b). It seems that the hand-washing has no immediate effect
on the measured temperature, as the temperature remains stable
during the wash. However, before the hand wash, the temperature
decreases and afterward it increases again. We assume that this is
due to the bathroom/kitchen being colder than the other rooms the
participants were in before handwashing. Therefore, although there
seems to be no change during the hand washing, the temperature
sensor might deliver context about the room in which a user might
be staying.

As expected, the pressure sensor’s reading stays almost perfectly
constant before, during, and after washing one’s hands. Therefore,
we did not include a visual representation of it in this report. It
follows that the pressure sensor readings are unlikely to have a
large effect on hand washing detection accuracy. However, when
the pressure sensor shows a high rate of change, we can also rule
out hand washing as the user’s current activity. In that sense, there

sensors abbreviation
Accelerometer A
Acc + H. + T. + P A+HTP
Accelerometer + Gyroscope AG
Acc. + Gyro. + Humidity AG+H
Acc. + Gyro + Temperature AG+T
Acc + Gyro + Pressure AG+P
Acc + Gyro + H. + T. + P. ALL

Table 2: Sensor subsets used for training and evaluation. H
stands for humidity, T for temperature and P for pressure.

is still an expected benefit of including it in the data, e.g. filtering
out the “stairs” activity.

3.5 Machine Learning Experiments
After the visual inspection of the recorded data showed promising
correlations between the newly added humidity sensor and the
hand washing labels, we trained random forest classifiers on the
data. The goal of the machine learning experiment was not to
maximize the performance but rather to explore the importance
of the multi-modal sensor setup. Specifically, each sensor’s impact
on the prediction performance of the trained classifier was to be
evaluated.

Hence, we trained models using different sensor configurations
in a small-scale ablation study and recorded the performance of the
random forest classifier for each sensor set. The sensor subsets we
used are listed in Table 2. The different sensor combinations are
used to measure the impact of each sensor’s addition or removal
from the dataset.

We trained and evaluated the models on non-overlapping 2.5s
and 5s-long sliding windows using the feature set in the enumera-
tion below:

• mean
• standard deviation
• minimum
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(a) Humidity: After the end of the hand washing, the
humidity decreases. The decrease is not as sudden
as the prior increase, which occurs around the start
of the handwashing.
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(b) Temperature: The readings tend to decrease
slightly (note the Y axis scale) when entering the
bathroom or kitchen, and rises after leaving it again.
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(c) Air Pressure: The pressure sensor’s readings stay
relatively constant during the hand washing. The
larger deviation after the hand washing comes from
one participant who took a walk up the stairs of the
building shortly after washing.

Figure 5: Response of the (a) humidity, (b) temperature, and (c) pressure sensors to hand washing, averaged (in dark blue) over
all recorded hand washes, with bootstrapped 95% confidence interval (in light blue). The start of the hand washing is marked
with a green vertical line. The yellow vertical lines mark the respective ends of all the handwashing instances.

• maximum
• slope (last value - first value)
• median
• inter-quartile-range
• first quartile
• third quartile
• average crossings (times the signal crosses the mean)
• skewness
• kurtosis

We chose this window length in line with other hand-washing
detection literature ([3]: 3s, [5]: 6s). The feature set was designed
to represent the findings of the previously mentioned visual in-
spection of the data. We included the usual statistical features of
mean, std, min, max, and interquartile ranges for each sensor axis.
Additionally, we added the slope of all sensors. One could also go a
step further and add features in the frequency domain, but for the
basic evaluation of the recorded data, we did not include this type
of feature in this work.

To receive an estimate of the participant-independent perfor-
mance, we explored a leave-one-participant-out (LOPO/LOSO) cross-
validation. Additionally, we used per-participant personalized mod-
els, to show the effect on single participants. For the personalized
model, we trained and evaluated on a train-test split, using 33 % of
the user’s data for testing and the rest for training the model.

We used a seeded random number generator and repeated the
experiment five times to reduce the randomness of the outcome.

4 RESULTS
The resulting F1-scores of our machine learning experiments are
displayed in Table 3 for both the LOSO-split and for the personalized
machine learning.

We also included the maximal baseline performance of a dummy
classifier to better relate the achieved F1 scores. The dummy classi-
fier performance is chosen as the best-performing dummy classifier

performance in any of the splits for the relevant task and window
size. Hence we over-estimate the dummy performance and find an
upper bound for the chance level.

The trainedmodel’s performance is significantly above the chance
level, with an average F1 score of 69.15 % for the participant-independent
task with 5 s windows, and an average F1 score of 85 % for the per-
sonalized task. This performance shows that the classifiers were
able to detect hand washing from the recorded background activi-
ties with high precision and recall. On the other hand, the higher
performance on the personalized task also shows that handwashing
is highly user-dependent. This could be explained by user-specific
rituals and patterns of hand-washing.

However, the results do not yield the expected result, that the
addition of the atmospheric sensors boosts machine learning perfor-
mance. Unlike the visual inspection proposed, the selected sensor
subset did not have a measurable impact on the performance. For
the participant-independent task, the "classic" combination of ac-
celerometer and gyroscope reached the highest performance. In the
personalized task, the atmospheric sensors in combination with the
accelerometer yielded the highest performance, with a tiny lead.

5 DISCUSSION
The results show that the addition of the atmospheric sensors can
provide additional context. In the visual inspection (see Fig. 4 and
Fig. 5 (a)) of the collected data, it becomes apparent that the increase
of humidity near the running tap can be measured reliably by the
used sensors. This could be helpful in visual inspection and retro-
spective annotation of wearable sensor data where hand washing
might occur. Thus, we would have expected, that the hand washing
detection performance is best with all sensors or at least the hu-
midity sensor included. There could be several reasons why this is
not the case in our experiment, with the manually crafted features
not taking advantage of this additional sensor’s potential as the
most likely explanation. This points to the need for more specific
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sensors window size A A+HTP AG AG+H AG+T AG+P ALL Chance

LOSO 2.5s 0.663 0.636 0.679 0.675 0.673 0.676 0.667 0.111
5s 0.681 0.683 0.704 0.693 0.691 0.702 0.688 0.077

Personalized 2.5s 0.819 0.846 0.844 0.830 0.848 0.857 0.849 0.188
5s 0.854 0.860 0.859 0.848 0.844 0.833 0.852 0.076

Table 3: Resulting F1 scores of the machine learning experiments. No sensor set performed significantly better than the others.
In the participant-independent task, the Accelerometer & Gyroscope performed best, while in the personalized task, the
Accelerometer & Gyroscope together with Pressure, and Accelerometer & all atmospheric sensors took the lead. Note that these
results also show that the dataset is more challenging than previous work, which sometimes reaches F1 scores over 0.9 (see
Section 2).

features for the slower and relative changes in humidity readings
in particular.

We also visualized the effect of hand washing on the temperature
recorded by the sensors. The change of measured temperature in
proximity to the running tap is found to be negligible, whilst the
change of room is consistently picked up in the sensor data.

While we can think of other applications for the atmospheric
pressure sensor, we do not see a large benefit in using it for hand
washing detection.While the pressure sensor probably helps to filter
out activities involving altitude changes, it likely does not provide
additional discriminatory performance against hand washing for
most activities.

In future work, more data and more background activities could
be recorded using the same system, which can be replicated as it
is open-source. A different machine learning paradigm, like end-
to-end deep learning, could also be employed to more precisely
capture the characteristic patterns of hand washing for the addi-
tional sensors.

Our developed prototype itself is easy to build and records the
data reliably. One limitation of the prototype is its reliance on a
nearby recording device. For our experiments, we used a laptop,
that was carried around by a researcher following the respective
participant everywhere. In the future, if we keep the prototype
based on the Puck.js, a smartphone application can be used in a
similar fashion. A smartphone with the application could be carried
around by participants in their pockets, without creating additional
disturbance.

Another limitation lies in the nature of the humidity sensor
itself. Due to it measuring the humidity in the air, the sensor values
only rise slowly, once the user starts washing their hands. They
also decrease over a long period of time, inducing some lag that
current features do not account for perfectly. The added sensor thus
provides a limited benefit if we want to detect the exact onset or
offset of the hand-washing activity, due to its slow adaptation. For
offline analysis, time-shifting the humidity signal by an appropriate
amount of milliseconds could be beneficial. For online analysis, no
such workaround seems obvious. Therefore, the humidity sensor
is only an addition to the much more frequently used IMU sensor
and likely should not be seen as a replacement for the latter.

6 CONCLUSIONS
This work showcases an open-source implementation of a hand-
washing detection system that uses sensing capabilities that go
beyond the usual sensingmodalities that are used in wearable-based

Human Activity Recognition (HAR). The developed prototype and
its software are evaluated in a feasibility study, recording the hand-
washing behavior of 10 participants. By analyzing the recorded data
visually, it is shown that the addition of some of the modalities, in
particular humidity, can provide distinctive readings for improving
the hand washing detection performance. Concrete evidence of a
large effect on machine learning performance must be provided
by further research on more data, and more specific features for
these new modalities. Such features should e.g. better capture the
observed pattern of rising humidity after most hand washing onsets.

Applications for hand washing detection, hand washing duration
predictions, hand washing quality prediction, and similar problems
are manifold and can be found in the domains of industry, health-
care, mental health, and more.

Based on our work, we argue that especially atmospheric sen-
sors should be considered for wearable devices aimed at reliably
detecting hand washing and distinguishing it from other activities.
In general, while atmospheric sensors have been proposed to be
used for HAR in the past, recent research has usually neglected
them. We argue that there are still more potential applications of
them to be explored in the future. The open question of extracting
distinctive features that describe the relative humidity rise and drop
before and after hand washing is the topic of such work in progress.

The firmware files for the Puck.js, the data recording script, the
recorded data, as well as the code used to produce our results, can
be found in our GitHub repository1.
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