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ABSTRACT
Wearable activity recognition research needs benchmark
data, which rely heavily on synchronizing and annotating
the inertial sensor data, in order to validate the activity clas-
sifiers. Such validation studies become challenging when
recording outside the lab, over longer stretches of time. This
paper presents a method that uses an inconspicuous, ear-
worn device that allows the wearer to annotate his or her
activities as the recording takes place. Since the ear-worn de-
vice has integrated inertial sensors, we use cross-correlation
over all wearable inertial signals to propagate the annota-
tions over all sensor streams. In a feasibility study with 7
participants performing 6 different physical activities, we
show that our algorithm is able to synchronize signals be-
tween sensors worn on the body using cross-correlation,
typically within a second. A comfort rating scale study has
shown that attachment is critical. Button presses can thus
define markers in synchronized activity data, resulting in a
fast, comfortable, and reliable annotation method.
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Figure 1: We present an inconspicuous annotation method,
in which users can annotate their activity data in situ with
an in-ear wearable (left), to mark and synchronize inertial
data from the ear with all other inertial sensors (right).

1 INTRODUCTION
As wearable sensors have been shrinking and getting less
power-hungry, their operation time and places where they
can be worn have inadvertently increased accordingly. Nowa-
days, multiple such sensors can be worn as patches or minia-
ture straps anywhere on the limbs, torso, or even on the head.
When doing experiments with such sensor data, however,
the annotation of the data has remained a burden, taking a
substantial amount of effort. Few methods exist that allow
the sensor data to be annotated directly, even fewer meth-
ods allow these annotations to be made for any amount of
wearable sensor data from the user’s body. In this paper, we
argue that an in-ear device that is equipped with inertial
sensors and a button would be an excellent candidate for
user annotation of activity data. It would allow the users to
annotate their data without much effort in a socially com-
fortable way, which also enables ’in the wild’ experiments
as study volunteers annotate activities in their daily lives. A
critical step in our method is the synchronization of sensor
data between all wearable sensors: We assume that all sen-
sors contain inertial sensors that show sufficient correlation
during everyday activities. The synchronization of different
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sensor signals plays a decisive role in activity recognition.
In most cases, a synchronization gesture is executed at the
beginning and end of the measurements to synchronize the
two or more time series. This method has the decisive dis-
advantage that it is time-consuming and error-prone. With
this paper we would like to introduce another approach, that
helps synchronizing an arbitrary number of sensor signals.
These signals only have the basic preconditions that they
must be recorded at the same time and that sufficient seden-
tary phases, greater than 1 minute, are included. The here
presented algorithm works with a very few calculation steps,
these are the calculation of the vector length, the standard
deviation and a binary filter that is used to decide if the ac-
celeration signal represents a sedentary or non-sedentary
activity. The given results show an median time mismatch
of 1.10 seconds and can be used to synchronize related, but
independently captured, sensor signals with a shared time
base. In order for the algorithm to work reliably with the raw
data, they must first be prepared and preprocessed. Chapter
4 describes the algorithm in detail. Our presented algorithm
is fast and easy to implement. This allows researchers to take
up this idea and incorporate it into their projects [2].

2 RELATEDWORK
When experiments in human activity recognition rely on
multiple inputs from an arbitrary number of sensors, a sig-
nificant hurdle is to synchronize all sensors’ data streams in
order to attach them to the same time base. Problems that
are typical in such cases have been discussed in detail in
previous publications, for example in [1] or [6]. Thus far,
several works have been published that deal with the syn-
chronization of two or more independently working sensors.
Some of these papers aim at explicitly synchronizing the
clocks or time stamps and consider distributed systems or
wireless networks, e.g. [14], [16], [15]. A large amount of
relevant work is also mentioned in patents, [17], [8], [7], [5],
[9] or [19].
[19] describes a procedure that synchronizes the record-

ings of several media devices with each other [19]. However,
the sample applications highlighted in this patent refer to
audio signals, such as sound recordings of various musical in-
struments or vocals. The published system is a client-server
application and works with manual set markers in the audio
signals. Much of the related research is modality-specific.
One approach is presented in [5], where the proposed syn-
chronization technique works with markers that need to
bet set in the data. The data then gets synchronized based
on these markers. Hesch et al. [7] provide a method that
uses a set of interrupt triggered markups. In this system, a
processor working in parallel to the CPU is responsible for
managing this. [18] developed an algorithm with which he

was able to synchronize data coming from a network of seis-
mic sensors. The approach calculates the most probable clock
offset for the data. The probably most usable global time was
determined from all available sensor clocks by calculating
the probability distribution of the clock offset measurements.
The most probable offset has been chosen as the offset to tie
all clocks to.
Work that is situated in wearable activity recognition re-

search encompasses [20], which presents an approach to
achieve robust active learning and avoid the typical anno-
tations errors that asks users to solve a relayed related task
and and estimates confidence scores from crowd sourcing.
Kunze et al. [13] published 2006 a method that used fea-

tures calculated for a sliding window to recognize the sensor
position on the human body. The experiment is divided into
5 phases. Firstly the walking activity has been recognized
frame by frame. To be sure that only the clean walking seg-
ments are used for location recognition, only these frames
where more then 70% of the data has been recognized as
walking were taken into account. The final total accuracy is
82% and shows that it is possible to create a certain context
awareness. This context awareness would be useful in the
following investigations for the algorithm presented here. In
this way the results could be improved.

3 SYSTEM DESIGN
Hardware
The hardware used for collecting labeled data is the eSense-
BLE [11] by the Pervasive Systems group at Nokia Bell Labs,
Cambridge. It is built with a custom-designed 15 x 15 x 3 mm
PCB and composed of a Qualcomm CSR8670, a dual-mode
Bluetooth audio system-on-chip (SoC) with a microphone
per earbud; a InvenSense MPU6500 six-axis inertial mea-
surement unit (IMU) including a three-axis accelerometer, a
three-axis gyroscope, and a two-state button; a circular LED;
associated power regulation; and battery-charging circuitry.
It is powered by an ultra-thin 40-mAh LiPo battery, but lacks
internal storage or real-time clock. Each earbud weights 20g
and is 18 x 20 x 20 mm. The left earbud is the one containing
the IMU sensor accessible through the BLE and will be used
in the remainder of this paper.
The Platypus prototype is a wrist-worn activity sensing

platform [10] that is equipped with a number of sensors,
including a full MPU9250 IMU, environmental sensors, and
several processing units included in an Edison System-on-
Chip module that runs an embedded Linux distribution as
operating system. We have used this prototype as it can
record the IMU data at a relatively high sampling speed of
300 Hz and present the recordings via a Secure Shell (SSH)
over the built-in WiFi transceiver.
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Mobile Application
To be able to get labeled data for cross correlation, we devel-
oped an Android App for data collection on Android Studio
by adapting only the needed aspects of the Android library
provided by the developers. The Android ScanFilter was used
to restrict the scan result to our desired eSense device, using
the LOW LATENCY scan mode. Notification was enabled
by writing to the descriptor for the push button status and
accelerometer data from the on-board IMU, which we set
to 50Hz sampling rate. The accelerometer works with the
default configuration of +/-4g( sensitivity of 8192 LSB/g).
Using the Android onCharacteristicChanged, accelerometer
data about three-axis is received and checked for correctness
using the CheckSum, then stored in the internal storage of
our mobile phone as a CSV file in unit of g and multiplied
by 10 to increase amplitude. We also saved a time-stamp
in microseconds that have elapsed since January 1, 1970 at
00:00:00 GMT. Additional, on every button push, the current
data from the accelerometer is labeled with an ASCII char-
acter and stored, as well as displayed on the TextView. We
had a challenge of receiving the same data on different time
stamps, but this was resolved by keeping the processing time
in the onCharacteristicChanged method as low as possible,
another problem that we encountered, was that each button
push notification caused some accelerometer package index
to be skipped on subsequent readings, restarting the IMU
sampling on each button push solved this problem. Finding
and establishing connection with the eSense (BLE and classic
Bluetooth) is a challenge and requires several trials.

4 METHODOLOGY
Beside of our study about the reliability of our proposed
algorithm we also asked the participants to fill out a short
questionnaire regarding the wearing comfort of the eSense
earbud by using the Comfort Rating Scale (CRS) as proposed
in [12].

Data Set
A data set of activity data of seven participants has been
recorded using the eSense and the platypus. The data recorded
by the eSense is sampled with 50 Hz, the data recorded with
the platypus is sampled with 300 Hz. The participants are
between 20 and 40 years old. We were able to recruit five
men and two women for the study. The platypus data set
consists of a total amount of round about 2.255.764 samples
or 2.08 hours of data. For the eSense we recorded 375.967
samples, which also results in 2.08 hours. The data set con-
tains acceleration data from both sensors for mixed activities:
(1) read or desk work, (2) walk, (3) climbing stairs, (4) sit, (5)
dribble a basketball and (6) pause or rest phase.

Title Description

Emotion

I am worried about how
I look when I wear this device.
I feel tense or on edge because

I am wearing the device.

Attachment I can feel the device on my body.
I can feel the device moving.

Harm
The device is causing me
some harm. The device

is painful to wear.

Perceived
change

Wearing the device makes me feel
physically different. I feel strange

wearing the device.

Movement
The device affects the way I move.
The device inhibits or restricts my

movement.
Anxiety I do not feel secure wearing the device.

Table 1: Comfort Rating Scale (CRS) categories as proposed
in [12]. The CRS includes 6 categories: Emotion, Attach-
ment, Harm, Perceived change, Movement and Anxiety.

eSense Wearing Comfort
In addition to the evaluation of the reliability of our presented
algorithm, it was also very important for us to evaluate how
comfortable the provided prototype was perceived by the
participants of the study. Table 1 shows the categories and
their description. The Emotion, Harm, and Anxiety cate-
gories are more about personal and psychological sensations
when wearing the device, while the remaining three cate-
gories focus on the device’s body feel. The participants are
able to choose a value between 0 and 10 for every category.
0 means it has low impact, and 10 a high impact.

Data Preparation
For evaluation purposes a ground truth is needed. Therefore
we used a synchronization gesture. In our case the synchro-
nization gesture has the requirement that both hand a head
needs to follow the same movement. Therefore a simple ver-
tical jump was chosen. This creates a clearly identifiable
peak in the acceleration data. The gesture was done at the
beginning and at the end of the recording and thus marks
both in the data.
To be able to synchronize two independent recorded sig-

nals we need to preprocess the data. The first step in the data
preparation process was to crop out the data at these marks.
Due to sample losses, for example through the the wireless
connection (BT or WiFi) or not fully achieved sampling rates,
the signals are initially of different length. Furthermore they
need to be sampled with the same sampling rates. Therefore
the Platypus data must be sampled down to 50 Hz. Since
we are only able to set a label for a certain sequence using
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the eSense, we have to set the timestamps of the eSense
as ground truth for all other body sensors involved in the
synchronization process. Under these circumstances we are
now able to calculate all sensor signals equidistantly. Due to
simulate the case that no synchronization gesture is available
to synchronize the data, the time series of the eSense was
shortened by 10% at the beginning and at the end.

Data Synchronization Method
Since the method for synchronizing signals is of central
importance, it takes up most of the work presented here. The
following table describes step wise the developed algorithm
and the results after every step. When the algorithm finishes
we are able to propagate the label throughout the sensors.
Parameters like the window-size and window-length, but
also the threshold of the binary filter, can be adjusted variably.
In the first version of the algorithm a simple ASCII character
is written with a button press at the beginning and end of
the activity. In the future we plan to use the microphone and
voice-to-speech recognition for setting the label.

Step Name Description

1 Dimension re-
duction of raw data

Calculate vector length per sample (dimension
reduction from 3D to 1D).
Result: Signals with reduced
dimension.

2 Windowing
Data is divided into windows. Window length
and overlap ratio can be set variable.
Result:Windowed data.

3 Feature calculation Calculation of the standard deviation.
Result: Standard deviation per window.

4 Binary Filter

Both standard deviation signals are
passed through a binary filter. A threshold
is used to decide whether it’s a sedentary or
a non-sedentary activity. 0 (sedentary) if the
current value is smaller than threshold and 1
(non-sedentary) if higher than the threshold.
Result: Two signals with the values 0 and 1.
0 for sedentary sequences and 1 or non-sedentary
activities.

5 Cross-Correlation

Cross-correlation [3] of both binary filtered signals.
The eSense signal is cross correlated with the
other signals.
Result: Cross-Correlation coefficiants.

6 Index Selection

The window with the highest correlation co-
efficient marks the best index synchronize the
signal.
Result: Start window for synchronizing

7 In-Window-
Cross-Correlation

Cross correlation for all samples in this window.
Result: Exact index for synchronization.

8 Label propagation
Labels from the eSense signal can be copied to
the other sensor data.
Result: Labeled data.

Table 2: Step by step explanation of the algorithm. The algo-
rithm is divided into 8 steps. First the dimension of the data
is reduced by calculating the vector length, divided into win-
dows and finally the standard deviation is calculated. The
standard deviations are now passed through a binary fil-
ter, which writes a 0 for sedentary activity and a 1 for non-
sedentary activity. Both signals are then cross-correlated.
The position of the highest correlation can then be used to
deduce the synchronization point in the initial signal.

Figure 2: CRS result means and standard deviation. Anxiety:
0.57, 0.6; Movement: 2.64, 3.09; Perceived Change: 2.85, 3.17;
Harm: 0.71, 0.8; Attachment: 5.42, 2.38; Emotion: 0.85, 1.31.

5 RESULTS AND DISCUSSION
Comfort Rating Scale
Figure 2 shows the result of our CRS study. To sum the re-
sult up we can say that in general the device is comfortable
to wear, but sometimes you can feel it moving in your ear.
One participant in the study noted that the earplugs tend to
fall out of the ear during heavy movement, like dribbling a
basketball, even if adjusted correctly. The average values for
the Emotion, Harm and Anxiety categories show that users
are generally not concerned about their appearance. This is
certainly due to the fact that earbuds are very inconspicu-
ous and devices like these have long since found their way
into our everyday lives. The results in the other categories
vary. This shows the standard deviation. The perceived wear-
ing comfort is strongly user-dependent and is probably also
related to the individual shape of the inner ear. This is as
unique as the fingerprint [4], which is why it is difficult to
develop a shape that everyone feels comfortable with.

Data Synchronization Method
In order to investigate the reliability in terms of automatically
synchronizing the inertial data streams, we decided to use
the time and sample mismatch between the ground truth
and the index used as the synchronization point. To evaluate
the performance of our algorithm we first calculated the best
working parameters for window size and overlap ratio by
using a brute force method. This was possible because of
the short computational time and, compared to long-term
benchmark data, limited amount of data. The determined
parameters from these experiments were found to be:

• window-size: 50 samples
• overlap-ratio: 85%

With these parameters fixed, we calculated the time mis-
match separately for every inertial data recording, as de-
picted in Table 3. The graphical representation as given out
by our algorithm are shown in the Figures 3, 5 and 4.
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These figures present two different signals: The top one
is the one recorded at the wrist by the Platypus prototype.
The bottom plot contains the inertial data from the eSense.
The ground truth, as obtained from synchronization gestures
before and after the recording (not shown), as a reference
is plotted transparently. Overlaying the ground truth the
resulting shortened and synchronized signal is depicted, with
the vertical red lines marking the beginning and ending of
the calculated synchronization point. The black line-plot
embedded in each bottom plots shows the correlation signal.
The inertial signals are synchronized according to the highest
cross-correlation.

Record Mismatch in Samples Mismatch in Seconds Activity
1 15 0.30 1, 3, 5, 6
2 16 0.32 1, 6
3 16 0.32 1, 4, 6
4 20 0.40 1, 6
5 21 0.42 1, 2, 5, 6
6 21 0.42 1, 4, 6
7 23 0.46 1, 3, 5, 6
8 87 1.47 1, 3, 5, 6
9 293 5.86 1, 3, 5, 6
10 386 7,72 1, 4
11 418 8.36 5
12 874 17.48 1, 4
13 1195 23.90 1, 2, 3, 5
14 1742 34.84 1, 4

Table 3: Synchronization error per record in samples and sec-
onds. The records are recordings from 7 participants and
overall 6 different activities. Synchronization tends to be
within one second for records that contain clear sequences
of activities that contain different intensities. (1) read or
desk work, (2) walk, (3) climbing stairs, (4) sit, (5) dribble a
basketball and (6) pause or rest phase.

In the first version of the algorithm the binary filter was
not yet part of it, which resulted in problems synchronizing
correctly, if no pause phases has been part of the record, for
example record 11 in Table 3. The binary filter sets a very
hard boundary between sedentary and non-sedentary activi-
ties, decided by a threshold, wherefore we needed to have a
closer look on the calculated standard deviation signal. Here
we saw that the threshold needs to be between 0.500 mg and
0.515 mg. After setting the boundaries we evaluated that the
best working threshold is at 0.508 mg. The mismatch (me-
dian) of the algorithmwas 61 samples or 1.22 seconds. Due to
the usage of the binary filter we were able to improve our re-
sults to 55 samples or 1.10 seconds of mismatch. The records
that could be rather poorly synchronized with our algorithm
are records that mostly consists of sedentary activities as
e.g. sitting, reading or desk work, as depicted in Figure 5 or
records with heavy movements, but without pause phases,
fig. 4. Very well devoted, data sets can be synchronized that

Figure 3: Best synchronization with a mismatch of 0.30 sec-
onds. The figure shows that the synchronization works best
with sufficient long periods of sedentary activity. The iner-
tial signal of thewrist (top) comparedwith the synchronized
signals of the head (bottom). The black signal at the bottom
left depicts the cross-correlation between the binary filtered
signals.

Figure 4: Data without sufficient pause phases, with plots
defined as in Figure 3, using Record 13 in table 3. Our al-
gorithm’s synchronization was off by 1195 samples or 23.90
seconds.

reflect activities involving a high degree of locomotion as
well as sufficient phase of pauses, e.g. figure 3.

• Minimum time mismatch: 0.30 seconds or 15 sam-
ples

• Maximum time mismatch: 34.84 seconds or 1742
samples

• Median time mismatch: 1.10 seconds or 55 samples

6 CONCLUSIONS
We presented in this paper a novel annotation method for
recording activity recognition benchmark data. Our method
relies on users wearing a small earbud-like device in their ear,
which is equipped with a button and an inertial measurement
unit. The inertial data from the ear-worn sensor are synchro-
nized to all other data via cross-correlation, after which the
user-presses serve as labels that annotate all sensor streams.
In a preliminary study with 7 users, we investigated how
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Figure 5: Worst-case synchronization with a mismatch of
34.84 seconds, record 14 in table 3. In this data almost only
desk work has been performed. The inertial signal of the
wrist (top) compared with the synchronized signals of the
head (bottom). The black signal at the bottom left depicts
the cross-correlation between the binary filtered signals.

well this synchronization works, as well as how comfortable
the earbud-like wearable was to our study volunteers.
This paper offers a first approach to spread the annota-

tions temporally correct over any number of sensors and to
synchronize time series that have been recorded at the same
time from different devices. If the data contains sequences
that can be uniquely assigned to an activity, with sufficient
periods of resting activity, the synchronization was found
to be sufficiently reliable. However, the algorithm does not
work reliably enough if the head and hand movements dur-
ing an activity do not basically follow the same direction or if
they can completely differ from each other. In addition, care
must be taken to ensure that the movements follow a pattern
that includes rest periods. The evaluation, as in Table 3, has
shown that these are essential for reliable synchronization.
In terms of wearing comfort, we found that the used eS-

ense prototype is highly promising as an annotation tool
for everyday recordings ’in the wild’. The fact that it can
be worn comfortably, with attachment as a weakest link for
some participants, and almost hidden in the ear makes it
ideal for recording and annotating data outside our labora-
tory. As such devices could be operated simultaneously as
wireless headsets, the one remaining hurdle for use of our
method in long-term and day-long activity recordings is the
eSense’s battery.
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