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Abstract
While prior work has shown that Federated Learning updates can
leak sensitive information, label reconstruction attacks, which aim
to recover input labels from shared gradients, have not yet been
examined in the context of Human Activity Recognition (HAR).
Given the sensitive nature of activity labels, this study evaluates
the effectiveness of state-of-the-art gradient-based label leakage
attacks on HAR benchmark datasets. Our findings show that the
number of activity classes, sampling strategy, and class imbalance
are critical factors influencing the extent of label leakage, with
reconstruction accuracies reaching well-above 90% on two bench-
mark datasets, even for trained models. Moreover, we find that
Local Differential Privacy techniques such as gradient noise and
clipping offer only limited protection, as certain attacks still reliably
infer both majority and minority class labels. We conclude by offer-
ing practical recommendations for the privacy-aware deployment
of federated HAR systems and identify open challenges for future
research. Code to reproduce our experiments is publicly available
via github.com/mariusbock/leakage_har.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting design and evaluation methods; • Computing method-
ologies → Distributed artificial intelligence.
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Federated Learning, Gradient Inversion, Label Leakage, Human
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1 Introduction
Federated training of deep learning classifiers has received increas-
ing attention in recent years [3, 5, 28]. In scenarios involving sensi-
tive data, Federated Learning (FL) enables multiple users to collabo-
ratively train a global model while keeping their local data private
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[15]. By exchanging only model updates, such as gradients or lo-
cally trained weights, FL was initially considered to offer strong pri-
vacy guarantees. However, subsequent research has demonstrated
that these updates may still leak sensitive information [18, 19],
including class labels [8, 9, 14, 25, 26, 31] and even reconstructed
representations of the original input data [9, 29, 33, 34]. With the
automatic recognition of activities through wearable devices such
as smartwatches having emerged as a valuable tool for numerous
applications, large-scale centralized approaches to Human Activity
Recognition (HAR) face considerable challenges due to privacy con-
cerns and legal constraints, and communication inefficiencies [11].
As a result, by allowing only model updates to be shared, Federated
Learning for Human Activity Recognition (FL-HAR) has become
a promising new approach to HAR to safeguard both sensor and
label information on user devices [6, 12, 24, 30].

Although prior work has shown that information leakage can
occur through FL updates, limited work has addressed these threats
specifically within HAR environments [4, 7, 10, 13, 20, 21, 27]. In
particular, gradient inversion attacks, which attempt to reconstruct
input data and associated labels from shared gradients, have not
yet been examined in the context of HAR. Given that activity labels
may reveal highly sensitive user behaviors and personal activity
patterns, this study investigates the applicability of state-of-the-
art, gradient-based label leakage attacks, originally developed for
computer vision tasks, when applied to HAR benchmark datasets.

Our contributions are three-fold:

(1) We conduct a comprehensive evaluation of five gradient
inversion techniques for label reconstruction across two
widely used HAR datasets and model architectures. We
also assess the effectiveness of local defense mechanisms
in mitigating such attacks.

(2) We demonstrate that both the number of activity classes in
a dataset, degree of imbalance and the sampling strategy
used during training play critical roles in determining the
extent of label leakage, even for fully trained HAR models.

(3) We show that the unbalanced nature of HAR datasets in-
troduces unique privacy risks in federated settings, and we
assess how this necessitates stronger applications of Local
Differential Privacy (LDP) methods to effectively hide user
label information.
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Figure 1: Overview of the applied threat model. An honest-
but-curious server exploits gradient updates received from
individual clients to infer the presence and distribution of
class labels within local batches. Label leakage attacks are
conducted by analyzing the gradients of the weights and
biases associated with the final layer 𝐿 of the trained model.

2 Related Work
Body-worn sensor data, particularly in the context of HAR, involves
the collection of sensitive user information. As such, it is typically
subject to strict data privacy regulations and is not easily shareable
in centralized learning environments [11]. In response, researchers
have explored federated learning as a privacy-conscious approach
to training HAR models [6, 12, 24, 30]. Given that related fields
like computer vision have revealed potential vulnerabilities in FL
environments, researchers have also begun investigating similar
risks in HAR scenarios [13, 20, 21, 27]. One of the earliest works
in this domain by Presotto et al. [20] demonstrated the feasibility
of Membership Inference Attacks (MIA) that determine whether
a user participated in the training process of a federated model.
Subsequent studies by Kerkouche et al. [10], Elhattab et al. [7],
and Chen et al. [4] expanded upon Presotto et al.’s findings, further
investigating MIA vulnerabilities in FL-HAR systems. Roy et al. [21]
additionally explored the integration of local differential privacy
measures while maintaining fairness in client update selection.

Early research into data reconstruction from gradients was pio-
neered by Phong et al. [18, 19]. Later, Zhu et al. [34] and Geiping et
al. [9] introduced attacks capable of reconstructing original input
data from gradients in FL systems. Beyond input reconstruction,
more recent work has focused on label leakage, i.e., inferring la-
bel information such as class presence or batch label distributions
from gradient updates [8, 14, 25, 29, 31]. To date, label leakage
attacks have not been investigated in the context of HAR. Given
that sensor-based HAR data and its use cases differ fundamentally
from those in computer vision, our study aims to demonstrate how
these differences, such as the prevalence of a majority NULL class,
temporal consistency across records, and small number of classes,
give rise to distinct privacy risks in FL-HAR systems.

3 Methodology
3.1 Problem Setting & Threat Model
We study a gradient-based FL setting in which multiple clients 𝐶
collaboratively train a global neural network 𝐺 . A central server
𝑆 coordinates the training by aggregating client-submitted gradi-
ents and updating the global model using gradient descent. More
specifically, each client 𝑐 receives a snapshot 𝜃𝑆 := (𝑊 𝑆 , 𝑏𝑆 ) of the
current weights and biases of a model G (summarized into model
parameters 𝜃𝑆 ) by the server, constructs a cost function

𝐸𝑐 (𝜃 ) =
∑︁

(𝑥𝑖 ,𝑦𝑖 ) ∈𝑇 𝑐

L(G(𝑥𝑖 ;𝜃 ), 𝑦𝑖 ), (1)

based on local client training data (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝑇𝑐 , a suitable loss
function L, and performs one or multiple steps of gradient descent
on 𝐸𝑐 . The new parameters are subsequently sent to the server. In
the simplest case of a single gradient descent step, the data sent
to the server are the gradients (∇𝑊 𝐸𝑐 ,∇𝑏𝐸𝑐 ) of the costs w.r.t. the
weights and biases of the network. In this work, we study what
this information reveals about the empirical distribution 𝑝 (𝑦) of
the activity labels 𝑦𝑖 in the client’s training data 𝑇𝑐 . Specifically,
we focus on the reconstruction of label information from gradients
of the last layer 𝐿 through gradient inversion attacks, as detailed in
Section 3.2. Throughout our work, we assume that clients compute
and share correct gradients without using class weights based on
valid data and labels and also assume that the server knows the num-
ber of training examples |𝑇𝑐 | =: 𝑁 , which were used to compute
the individual gradients. The threat model considered is that of an
honest-but-curious server : the server 𝑆 performs protocol-compliant
aggregation but is passively interested in extracting sensitive infor-
mation from the received updates (see Figure 1). While alternative
threat models, such as an actively malicious server that modifies
the model to enhance information leakage, or clients that train with
more than 𝑁 data points, are plausible, they fall outside the scope
of this work.

3.2 Label Reconstruction Attacks
We consider both weight-based and bias-based attacks, which re-
spectively exploit the gradients of the weights (∇𝑊 𝐸𝑐 ) and biases
(∇𝑏𝐸𝑐 ) of the model’s final layer, i.e., the classification layer. All
attack methods operate under a white-box assumption, wherein the
server has full knowledge of the model architecture and the batch
size used to compute each gradient update. We consider these as-
sumptions realistic, given that the server orchestrates and oversees
the federated learning process.

Weight-based Attacks. For weight-based label reconstruction, we
employ the LLG and LLG* attacks introduced byWainakh et al. [26].
These methods exploit two key properties of the weight gradients
in the final (classification) layer. First, for a given class label 𝑖 , the
sum of the corresponding weight gradient (∇𝑊𝑖

𝐸𝑐 ) tends to be
negative if label 𝑖 is present in the local training batch. Second, in
an untrained model, the total contribution of class 𝑖 to the weight
gradient is approximately proportional to the number of samples
in the batch with that label. Based on this, the authors define a
constant𝑚 representing the gradient impact of a single instance of
label 𝑖 . The LLG* variant assumes additional attacker knowledge of
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the model architecture and parameters, allowing for more accurate
estimation of𝑚 using synthetic batches of dummy data.

Bias-based Attacks. The LLBG attack, proposed by Gat et al.[8],
consists of a two-phase procedure. In the first phase, all labels that
are guaranteed to be present in the batch, i.e. having a negative bias
gradient component𝑔𝑖 , are added to the reconstructed label set. The
associated gradient values are then increased by an estimated𝑚,
similar to the LLG approach [26]. They estimate that for untrained
models the impact of a class is defined by 𝛽𝑖 ≈ −𝜆𝑖

𝑁
, where 𝜆𝑖 is

the number of samples of class 𝑖 in the batch, 𝑁 is the batch size
and 𝛽𝑖 is a single component of the bias gradient, thus LLBG uses
−1/𝑁 as𝑚 for untrained models. In the second phase, the label 𝑖
corresponding to the current minimum bias gradient component
𝑔𝑖 is iteratively appended to the reconstructed list, with its value
increased by𝑚. If the gradient remains minimal, label 𝑖 is again
added to the reconstructed list; otherwise, the process switches
to the new minimum component in 𝑔. This continues until the
reconstructed label set reaches batch size 𝑁 .

The EBI attack is a baseline that is used in [8] tries to estimate
the impact𝑚 of a label empirically by computing

𝑚 =
1
𝑁

∑︁
𝑖; 𝛽𝑖<0

𝛽𝑖 , (2)

where 𝑁 is the batch size, 𝛽 is the complete bias gradient (∇𝑏𝐸𝑐 )
and 𝑖 is used to indicate a specific component of 𝛽 . In that regard, it
is similar to the LLG attack [26] but uses the algorithm of LLBG [8].
While a variant of LLBG tailored for trained models is proposed
in [8], it requires knowledge of model prediction accuracy and is
thus excluded from this work. The iLRG attack by Ma et al. [14] for-
mulates label reconstruction as solving a system of linear equations
over batch-averaged gradients.

3.3 Defense Measures
Though research has continuously worked on privacy-enhancing
methods such as Differential Privacy (DP) [16] and encryption-
based techniques [3], many of these methods require coordination
of the server, i.e. requiring trust of the users in the server. The
Federated Learning environment sketched in Figure 1 assumes that
users do not trust the server they are sending their gradient-based
updates to. We thus only focus on Local Differential Privacy meth-
ods, namely gradient clipping and noise addition. These methods,
being executed locally by each user individually, do not require
users to trust the server. In a realistic setting, a privacy budget 𝜖
determines the degree of LDP to be applied during the federated
training process of the neural network. This work, though, applies
the approach of Gat et al. [8] where no privacy budget needs to
be retained because the label reconstruction is evaluated on single
batches sampled from the datasets without running a complete
training scenario. The clipping of the gradients is done by normal-
izing the gradient vectors to an L2-norm of 𝜌 if the norm of the
gradient exceeds a defined threshold. Noise is added to the gradi-
ents by sampling from a Gaussian distribution that has a mean of
𝜇 = 0 and a predefined standard deviation of 𝜎 .

3.4 Experimental Setup
We investigate label leakage in HAR using two widely adopted
lightweight deep learning architectures DeepConvLSTM [17] and
TinyHAR [32]. The DeepConvLSTMmodel comprises a sequence of
four convolutional layers, two LSTM layers, and a final classification
layer. TinyHAR extends this design by incorporating optimized tem-
poral feature extraction mechanisms, such as self-attention, while
also significantly reducing the parameter count, thereby enhancing
its suitability for deployment on resource-constrained edge devices.
For evaluation, we utilize two real-world HAR datasets, namely the
WEAR [1] and Wetlab dataset [23]. Both datasets include a NULL-
class representing periods not associated with any target activity.
The WEAR dataset features participants performing 18 distinct
sports activities outdoors while wearing four inertial measurement
units (IMUs) on their limbs and a head-mounted camera. In our
experiments, we use a pre-release version of the dataset consisting
of 18 participants and rely solely on IMU-data. The Wetlab dataset
includes 22 participants executing DNA extraction procedures from
onions and tomatoes in a laboratory setting, while wearing a wrist-
mounted IMU on the dominant hand. This dataset comprises 9
activity classes, such as cutting, inverting, and peeling. For a spe-
cific dataset and a specific client with local training data 𝑇𝑐 , we
define the histogram

𝑝gt :=
∑︁

𝑦𝑖 ∈𝑇 𝑐

𝑒𝑦𝑖 (3)

for 𝑒 𝑗 being the 𝑗 − 𝑡ℎ unit vector. We compute an estimate 𝑝 of 𝑝gt
using one of the gradient inversion attacks and evaluate

• the Label Existence Accuracy (LeAcc),

1
|𝑛 |

𝑛∑︁
𝑗=1

���(𝑝gt𝑗 > 0) − (𝑝 𝑗 > 0)
��� , (4)

where the > 0 denotes a thresholding,
• the Label Number Accuracy (LnAcc),

1
|𝑇𝑐 |

𝑛∑︁
𝑗=1

min(𝑝gt
𝑗
, 𝑝 𝑗 ) (5)

and average these results over all𝑇𝑐 of a client to compute a single
LeAcc and LeAccmetric. As LeAcc and LnAcc are compute per batch,
datasets which show an unbalanced class count can cause these
metrics to be biased towards majority classes. We thus propose
a third metric, Class-wise Average Accuracy (ClassAcc), which is
calculated as the average of the per-class LnAcc computed across
the complete dataset of a client, i.e. all 𝑇𝑐 that were reconstructed
of a specific client.

4 Results
The following presents the experimental results of each label leak-
age attack across all combinations of datasets and model architec-
tures. We examine the influence of different sampling strategies,
model states (trained vs. untrained), single- versus multi-step up-
dates and the effectiveness of privacy-preserving mechanisms. All
experiments were conducted using an unweighted cross-entropy
loss, applying the leakage attacks on the batch-wise gradients re-
turned by the last layer of the respective model.
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Figure 2: Comparison of LnAcc, LeAcc and ClassAcc of the investigated attacks using a shuffling sampling technique and a batch
size of 100 samples. Each value is the average across the different dataset (WEAR and Wetlab) and architecture combinations.
Error bars refer to Standard Deviation (SD) across clients.

Both the WEAR [1] and Wetlab datasets [23] are sampled at
50Hz, and input sequences are generated using a sliding window
of 1 second (50 samples) with a 50% overlap. Label leakage for each
client, i.e. participant, is evaluated using a Leave-One-Subject-Out
cross-validation, which means that data of the client for which
label leakage is to be investigated was previously unseen to the
global model. Note that a trained model refers to a model which
has been locally trained by the server for 100 epochs using all
other participants data using the training setup as reported in [2].
Models are assessed by how well they reconstruct the local data𝑇𝑐

of clients, iterating through the clients data in batch-wise manner
with the batch size being the size of 𝑇𝑐 .

Single-step gradient updates. Figure 2 presents the results of the
evaluated label leakage attacks on the WEAR and Wetlab datasets,
using shuffled sampling with a batch size of 100 sliding windows.
Overall, bias-based techniques, namely EBI, iLRG, and LLBG, con-
sistently outperform the weight-based techniques LLG and LLG* by
a significant margin. Among all methods, iLRG achieves the highest
performance on untrained models, with an average ClassAcc of
approximately 97% on the WEAR dataset and 81% on the Wetlab
dataset. In contrast, for trained models, EBI and LLBG also become
effective attacks, achieving around 70% on WEAR and between
40-47% on Wetlab. In addition to the shuffled sampling approach,
we evaluate two alternative sampling techniques: sequential and
balanced. Sequential sampling preserves the temporal order of slid-
ing windows, while balanced sampling constructs batches contain-
ing an equal number of samples per class by randomly drawing
from class-specific pools. Note that to address class imbalance in
the dataset, balanced batches are filled using repeated samples as
needed.

Table 1 reports the average performance for each sampling tech-
nique, aggregated across bias- and weight-based attacks and model
architectures. Results show that sequentially sampled batches ex-
hibit significantly more label leakage than balanced or shuffled
batches. When comparing the performance of attacks on untrained
versus trained models, LLBG and EBI show improved performance
on trained models when using shuffled and balanced sampling. In

contrast, iLRG experiences a noticeable drop in effectiveness when
applied to trained models. Among all methods, EBI remains the
most stable across both trained and untrained scenarios. When
comparing the two architectures, TinyHAR and DeepConvLSTM,
performance varies across experiments. However, a trained Tiny-
HAR model shows greater vulnerability to the iLRG attack, with
higher leakage levels across all evaluations. Meanwhile, EBI and
LLBG generally perform better on the DeepConvLSTM than on
TinyHAR when models are trained. Looking at dataset differences,
the WEAR dataset consistently exhibits greater label leakage than
Wetlab. In particular under sequential sampling, EBI and LLBG
maintain ClassAcc levels above 90% on WEAR, even with trained
models. This heightened vulnerability is likely due to the recording
setup of the WEAR dataset, which contains fewer activity tran-
sitions. As a result, sequential batches more frequently become
label-exclusive, i.e., containing only a single class. Our results in-
dicate that such batches pose a serious privacy risk, as labels can
be accurately reconstructed in various settings. In summary, since
shuffled batches consistently yield the lowest leakage, we hypoth-
esize that effective mitigation of label leakage in HAR involves
constructing batches that contain a diverse set of activity classes,
yet are not fully class-balanced.

Multi-step gradient updates. Since communication costs between
clients and server are a critical resource in federated learning,
McMahan et al. [15] proposed that clients perform multiple lo-
cal gradient update steps before communicating with the server.
This approach, known as FedAVG, significantly reduces commu-
nication overhead, as clients no longer need to transmit updates
after every local step. In the context of our investigation into label
leakage attacks, we again assume that the client and server agree
on a fixed number of data points, |𝑇𝑐 |, for local training before
sending an update. We explore whether averaging gradients over
𝑆 local updates, i.e., splitting |𝑇𝑐 | into 𝑆 equal-sized mini-batches,
can reduce label leakage risks from a single user.

Figure 3 shows sample results comparing the difference in per-
formance between single-step gradient update experiments (|𝑇𝑐 | =
100; 𝑆 = 1) with multi-step variants. Results show that bias-based
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Sampling Technique WEAR (U) WEAR (T) Wetlab (U) Wetlab (T)

Shuffle

Weight 19.09% 19.13% 25.89% 27.12%
(±3.67) (±5.66) (±6.69) (±16.63)

Bias 48.50% 71.21% 37.76% 46.67%
(±4.89) (±4.02) (±6.25) (±9.23)

Avg. 36.74% 50.38% 33.01% 38.85%
(±4.40) (±4.68) (±6.42) (±12.19)

Sequential

Weight 27.26% 40.32% 25.05% 30.75%
(±4.47) (±32.70) (±5.81) (±18.89)

Bias 98.64% 80.71% 81.67% 70.76%
(±0.66) (±3.67) (±4.74) (±6.44)

Avg. 70.09% 64.56% 59.02% 54.75%
(±2.18) (±15.28) (±5.17) (±11.42)

Balanced

Weight 14.34% 14.98% 15.65% 15.91%
(±0.37) (±4.81) (±1.07) (±2.79)

Bias 70.07% 71.00% 68.33% 65.94%
(±0.60) (±2.45) (±2.47) (±6.26)

Avg. 47.77% 48.59% 47.26% 45.93%
(±0.51) (±3.39) (±1.91) (±8.56)

Table 1: Average ClassAcc of bias- and weight-based attacks
applied to WEAR and Wetlab using shuffled, sequential and
balanced sampling. We differentiate between trained (T) and
untrained (U) models and report SD across clients.
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Figure 3: Exemplary multi-step experimental results applied
on the Wetlab dataset for an untrained DeepConvLSTM. We
report the average LnAcc difference between single step and
multi-step gradient updates using different amounts of client
data (|𝑇𝑐 |) and local update steps (𝑆) for multi-step and fixing
single-step experiments at |𝑇𝑐 | = 100 and 𝑆 = 1. Positive val-
ues indicate increased leakage in multi-step updates, while
negative values indicate reduced leakage.

attacks, with the exception of iLRG, maintain stable performance
even when reconstructing multi-step updates from untrained mod-
els. When applied to trained models however, LLBG and EBI ex-
hibit more significant reductions in leakage, particularly under
balanced sampling. Notably, an increased |𝑇𝑐 | = 500 results in the
largest performance drop in ClassAcc and LnAcc for sequential
sampling, which we hypothesize is due to batches becoming less
class-exclusive as more data points are included, thereby reducing
the effectiveness of reconstruction. Interestingly, iLRG, while heav-
ily affected bymulti-step updates, proves to be themore stable when
applied to a trained models, and even increases in performance in
certain cases when applied to shuffled and balanced batches. Finally,

our results indicate that single-step and multi-step updates pose
similar privacy risks. Though larger amounts of local client data
showed to decrease leakage, it does not hide users label information
effectively with LnAcc and LeAcc still remaining high, suggesting
certain classes still being able to be reconstructed.

Single-step with LDP. Having shown that multi-step updates
alone do not sufficiently mitigate label leakage, we further inves-
tigate whether LDP techniques, specifically gradient clipping and
gradient noise, can better protect clients’ label information from
the server. We repeated our initial experiments, this time applying
one of the following LDP configurations: (1) gradient noise (Gauss-
ian noise with mean 0 and standard deviation 0.1), (2) gradient
clipping (scaling gradient vectors to an L2-norm of 0.1), or (3) a
combination of both. Importantly, LDP measures were applied only
to the gradients of the last model layer, as these are targeted by
the label leakage attacks. Figure 4 presents representative results
for the LLBG attack applied to a trained DeepConvLSTM model.
Overall, when comparing across all attack methods, we observe
that gradient clipping alone is largely ineffective, particularly on
gradients from sequentially sampled batches. With the exception
of iLRG, other methods exhibit minimal change in effectiveness
with clipping applied. Among all techniques, EBI remains the most
stable, maintaining consistent performance across all LDP variants.

Sequential sampling continues to be the most vulnerable con-
figuration, with EBI and LLBG achieving more than 70% ClassAcc
for untrained models and more than 60% for trained models, even
in the presence of noise. Nevertheless, noise addition significantly
reduces LnAcc across all sampling methods, suggesting less pre-
cise label prediction. However, LeAcc remains high, indicating that
attackers can still reliably infer whether a label is present in the
batch. Notably, only the combination of clipping and noise proves
to be an effective defense under sequential sampling. While this
combined approach offers meaningful defense against bias-based
attacks on sequential batches, LeAcc scores still exceed 50% across
all leakage attacks and even up to 80% in case of the iLRG attack on
the Wetlab dataset. This indicates that the presence of classes can
still be recovered with relatively high accuracy, raising persistent
privacy concerns despite the application of LDP and underscoring
the need for more robust privacy-preserving strategies, especially
for protecting less frequent activity classes.

5 Limitations
Our paper presents the first comprehensive benchmarking of pop-
ular label leakage attacks on HAR benchmark datasets. While
the effectiveness of these methods varies across architectures and
datasets, our findings reveal a consistent trend: the unique charac-
teristics of HAR data introduce significant privacy vulnerabilities
that warrant serious attention. In particular, the inherent class
imbalance in HAR datasets limits the reliability of conventional
metrics such as LnAcc and LeAcc, commonly used in computer
vision. These metrics tend to favor majority classes and can thus
give a misleading impression of attack effectiveness. To address this,
we introduced ClassAcc, a class-averaged metric that is calculated
on a dataset-level, which contributes to a more class-balanced view
of exhibited label leakage. Our evaluation of LDP defenses showed
that while gradient noise and clipping are limited in isolation, their
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Figure 4: Results of the LLBG label leakage attack being applied to theWetlab dataset using a trained DeepConvLSTM. Confusion
matrices show the reconstructed label accuracy for the shuffled and sequential sampling case when using (1) no local differential
privacy, (2) gaussian noise addition (3) gradient clipping and (4) the combination of both as described in the paper.

combination offers a more effective defense, yet certain attacks still
achieved high recognition rates of class presence. Although more
advanced privacy-preserving mechanisms exist, we chose these
techniques due to their widespread adoption and computational
simplicity and leave it to future work to explore more robust LDP
strategies that can ensure privacy protection also in case of class
presence.

Additional experiments (provided in the code repository) further
indicate that applying clipping and noise to the gradients of the last
layer does not impair the prediction accuracy of trained models.
As our experiments focus on single-client gradient updates, future
research could examine how multi-client aggregation impacts label
leakage, particularly in real-world FL deployments. Additionally,
since bias-based attacks consistently outperformed weight-based
ones, a practical defense recommendation may be to train HAR
models without bias terms, as suggested in [22]. Further investiga-
tion could also be warranted into why iLRG was the most volatile
among all label leakage attacks studied, with its performance highly
sensitive to LDP measures and multi-step averaging. Moreover, al-
though commonly employed in HAR tasks, we deliberately did not
apply a weighted loss during training. Weighted losses increase
the influence of rare classes on the gradient, potentially making
these classes more susceptible to leakage, an especially critical con-
cern in sensitive domains such as healthcare and disease detection.
Lastly, given the scope of our experimental framework, we report
only the most representative trends in the paper. To support repro-
ducibility and future research, we have open-sourced all code and
experiments in our code repository.

6 Discussion & Conclusions
This paper presented a first-of-its-kind analysis of label reconstruc-
tion in federated HAR. A comprehensive evaluation of five gradient
inversion techniques demonstrated that the unbalanced nature of
HAR datasets poses significant privacy risks that can be exploited

by leakage attacks. LDP measures, namely gradient clipping and
noise addition, proofed to be partially effective when combined,
but insufficient to ensure full privacy in cases involving sequential
sampling. Regardless of whether leakage methods were applied to
multi-step averaged gradients or LDP-distorted gradients, label-
exclusive batches still allowed certain attacks to infer the presence
of classes with high accuracy. Our analysis suggests that the number
of activity classes, the degree of class imbalance, and the sampling
strategy are the main factors influencing the extent of label leakage.

Applying this to a real-world setting, we see a significant risk to
stream-based HAR applications, such as those found in wearable
fitness trackers, smart homes, or healthcare monitoring, where data
is processed and uploaded continuously. In such settings, users
often send gradient updates immediately after short recording ses-
sions. If these updates are based on label-exclusive batches (i.e.,
containing only one activity), they become especially vulnerable to
label leakage. To mitigate this, system designers should implement
mechanisms that delay model updates until a sufficient and diverse
amount of data has been collected, ideally covering all or most
activity classes. This allows for the use of shuffled sampling strate-
gies, which are significantly more robust against leakage. Moreover,
applying stronger privacy protections, such as combining gradient
clipping with noise addition, should be considered mandatory when
sequential or imbalanced sampling from a small number of classes
cannot be avoided.
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