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Abstract. Many users are confronted multiple times daily with the 
choice of whether to take the stairs or the elevator. Whereas taking the 
stairs could be beneficial for cardiovascular health and wellness, taking 
the elevator might be more convenient but it also consumes energy. By 
precisely tracking and boosting users’ stairs and elevator usage through 
their wearable, users might gain health insights and motivation, encour-
aging a healthy lifestyle and lowering the risk of sedentary-related health 
problems. This research describes a new exploratory dataset, to examine 
the patterns and behaviors related to using stairs and lifts. We collected 
data from 20 participants while climbing and descending stairs and tak-
ing a lift in a variety of scenarios. The aim is to provide insights and 
demonstrate the practicality of using wearable sensor data for such a 
scenario. Our collected dataset was used to train and test a Random 
Forest machine learning model, and the results show that our method is 
highly accurate at classifying stair and lift operations with an accuracy 
of 87.61% and a multi-class weighted F1-score of 87.56% over 8-second 
time windows. Furthermore, we investigate the effect of various types 
of sensors and data attributes on the model’s performance. Our findings 
show that combining inertial and pressure sensors yields a viable solution 
for real-time activity detection. 

Keywords: Real-time activity recognition · Wearable inertial 
sensing · Barometric pressure sensing · Stairs and lift taking detection 

1 Introduction 

The proliferation of wearable technology in recent years has significantly trans-
formed how we monitor and understand human physical activities. Wearable 
devices, equipped with a variety of sensors, have emerged as pivotal tools in 
numerous fields including health monitoring, fitness tracking, and medical diag-
nostics [ 10, 14]. Activity recognition, a key application of wearable technology,
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involves the identification and classification of various physical actions performed 
by an individual, such as walking, running, sitting, or in our case more complex 
activities like climbing stairs or using an elevator [ 4, 16]. 

Differentiating between activities such as stair climbing and lift use is 
especially important since each activity places different physiological and bio-
mechanical demands on the body [ 12]. Stair climbing is a physically challeng-
ing activity that can yield useful information on cardiovascular health, lower 
body strength, and overall mobility. It is also connected with a high caloric 
expenditure, making it an important exercise to track in fitness and weight con-
trol settings [ 3, 6]. In contrast, using an elevator indicates stationary behavior, 
emphasizing times of immobility that are critical to understanding overall activ-
ity patterns and such behavior [ 18]. 

The use of pressure sensors in wearable electronics provides a precise and 
effective approach for capturing the finer details of these actions. Pressure sen-
sors detect differences in pressure at different positions or in various situations, 
providing extensive information on an individual’s gait and posture [ 8]. For 
example, the pattern of pressure changes while ascending stairs differs signif-
icantly from the pressure change while standing still in an elevator. Using these 
sensors, we can improve the accuracy of activity recognition, allowing us to dis-
tinguish between the energy demands of stair climbing and the passive nature 
of the elevator use. 

The ability to accurately recognize and differentiate various activities offers 
profound implications across multiple domains. In personalized healthcare, it 
enables tailored interventions and monitoring, enhancing treatment plans and 
preventive care [ 24]. Additionally, In the context of elderly care, detecting the 
specific activity of stair climbing versus elevator use becomes critical in ensur-
ing safety. Many older adults are at a higher risk of falls when ascending or 
descending stairs, and timely detection of stair use can help caregivers monitor 
and prevent potential accidents or offer immediate assistance when needed [ 7]. In 
this way, monitoring specific activities can contribute to safer and more secure 
living environments for vulnerable populations. In the fitness industry, these 
technologies allow for more customized exercise plans and real-time feedback 
on performance, aiding in achieving personal fitness goals [ 20]. Furthermore, In 
workplace ergonomics and occupational health, recognizing whether employees 
are using stairs or elevators can assist in designing more efficient movement 
patterns within the workplace. Employers can encourage healthier habits such 
as stair climbing, which can reduce sedentary behavior, improve cardiovascular 
health, and enhance overall well-being among workers [ 9]. Additionally, analyzing 
activity patterns can help assess whether employees are adhering to ergonomic 
safety protocols, potentially reducing the risk of workplace injuries associated 
with improper movements or excessive inactivity. 

Our dataset 1 and this paper’s preliminary experiments offer several contri-
butions:

1 Both the code and data (raw and resampled form) for the project are publicly accessi-
ble on GitHub: https://github.com/iiMox/project_work_stairs_lift_detection.git. 

https://github.com/iiMox/project_work_stairs_lift_detection.git
https://github.com/iiMox/project_work_stairs_lift_detection.git
https://github.com/iiMox/project_work_stairs_lift_detection.git
https://github.com/iiMox/project_work_stairs_lift_detection.git
https://github.com/iiMox/project_work_stairs_lift_detection.git
https://github.com/iiMox/project_work_stairs_lift_detection.git
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– Introduction of a stairs and lift taking dataset: We present a dataset specif-
ically dedicated to distinguishing between lift usage and stair climbing with 
multiple sensors and a high variability between participants. 

– Characterization of barometric pressure sensor data: We provide a proof of 
concept for the application of pressure sensor data in activity recognition. 

– Examination of Window Size for Time-Series Data: We investigate the impact 
of various window sizes on the pre-processing of time-series data. 

– Feature Importance Analysis: We analyze the importance of different fea-
tures, highlighting the critical role of pressure measurements in accurately 
classifying activities. 

2 Related Technologies 

2.1 Sensors 

The field of activity recognition using wearable technology has seen significant 
advancements due to the integration of various sensor technologies and data 
analysis techniques [ 25]. In our study, we utilized accelerometer and barometer 
sensors to capture the necessary data for activity recognition. The accelerometer 
measures the acceleration forces acting on the device, providing detailed infor-
mation about movement and orientation. The barometer, on the other hand, 
measures atmospheric pressure, which can be useful in detecting changes in ele-
vation, such as when a person uses stairs or an elevator [ 15]. 

2.2 State of the Art and Limitations 

The development and validation of activity recognition systems have heavily 
relied on various publicly available datasets. These datasets contain sensor data 
collected from wearable devices, which were placed on participant’s bodies and 
recorded during different physical activities. The datasets are crucial for training 
and evaluating machine learning models. This section reviews some of the most 
commonly used datasets in the field that include stair usage, highlighting their 
contributions. 

Among the prominent datasets, the UCI HAR [ 2] dataset includes activities 
such as “walking upstairs” and “walking downstairs” performed by participants 
wearing smartphones on their waists. Similarly, the PAMAP2 [ 17] dataset cap-
tures a range of activities including “ascending stairs” and “descending stairs” 
using multiple sensors placed on participants’ bodies. The MHealth dataset [ 5] 
also includes “climbing stairs” along with other physical exercises. Table 1 lists 
some of the public activity recognition datasets that contain “stairs” as one of 
their activities. The table also includes information about the recorded sensors 
and the overall size of the datasets mentioned. 

None of the datasets we examined that included stair usage involved the 
activity of taking lifts. Furthermore, to our knowledge, there are no datasets that 
specifically involve the activity of using lifts. There are also devices like “Fitbit”
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that can detect if you are taking the stairs [ 19], using sensors such as altimeters to 
measure elevation changes. However, these devices do not focus on differentiating 
between the usage of lifts and stairs specifically, and user reports [ 1, 21] indicate 
that they cannot reliably detect the difference between lifts and stairs. 

In addition to these datasets, other related works pursue the same goal of 
promoting healthy living through wearable technology. For instance, Neves et 
al. [ 11] explore the use of wireless sensor networks to monitor health metrics 
and encourage healthier behaviors. Similarly, Ohtaki et al. [ 13] developed a sys-
tem that automatically classifies ambulatory movements and estimates energy 
consumption using accelerometers and a barometer. Although these studies do 
not focus on differentiating between lift and stair usage, they contribute to the 
broader objective of using wearable devices and sensor technologies to enhance 
health by monitoring physical activity and energy expenditure, aligning closely 
with our study’s focus on leveraging sensor technology for health promotion. 

Our study, therefore, aims to fill this gap by providing extensive sensor data 
from participants specifically using lifts and stairs. 

Our focus is on capturing the use of lifts and stairs, and not just having 
incidental usage. Our study, therefore, aims to fill this gap by providing extensive 
sensor data from a larger cohort of participants specifically using lifts and stairs. 
This level of detail and focus on lift versus stair usage is not comprehensively 
covered by existing datasets, making our publicly available dataset the first with 
this focus. 

3 Data Collection and Analysis 

A total of 20 participants were involved in the data collection process. These 
participants varied in age (26.0 ± 10.75), gender (10 male and 10 female), and 
physical fitness levels to ensure a diverse dataset that reflects different human 
movement patterns. Prior to participation, each individual signed a consent form, 
acknowledging their voluntary involvement and understanding of the experi-
ment’s procedures and objectives. Additionally, we submitted a detailed pro-
posal to The Council for Ethics in Research (Ethics Council) of the University 
of Siegen, which reviewed and approved the study, allowing us to proceed with 
the experiment. The data was gathered using the Bangle.js 2 smartwatch, which 
is equipped with both accelerometer and barometer sensors. The accelerometer 
measures the acceleration forces acting on the device in three-dimensional space, 
while the barometer provides data on atmospheric pressure, which can be used 
to infer altitude changes. 

3.1 Data-Collection Procedure 

The experiment was conducted in a university building that comprises a total 
of eight floors that can be switched between by either flights of stairs or a set 
of elevators. This environment was chosen due to its accessibility and the avail-
ability of both stairs and elevators. To ensure variability and reduce systematic 
bias, we employed randomization in our experiment in several ways:
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Table 1. State-of-the-art datasets that are related to activity recognition and contain 
going up or down the stairs as an activity. The datasets differ in the contained activities, 
numbers of participants, and sensors used, as well as in their sizes. Our newly created 
dataset is the only available dataset that includes taking the lift as an activity and 
uses a barometric pressure sensor. 

Dataset Activities Stairs Lift Users Sensors used Dataset size 
UCI HAR 
(Human 
Activity 
Recognition 
Using 
Smartphones) 
[ 2] 

Walking, 
Walking 
Upstairs, 
Walking 
Downstairs, 
Sitting, 
Standing, 
Laying 

Yes No 30 Accelerometer, 
Gyroscope 

10,299 
Observations 
(Each 2.56 s) 

PAMAP2 
(Physical 
Activity 
Monitoring) 
[ 17] 

18 total -
basic, 
household, 
and exercise 
activities 

Yes No 9 Accelerometer, 
Gyroscope, 
Magnetome-
ter, Heart 
Rate 
Monitoring 

About 10 h 
(IMU data: 
100 Hz Heart 
rate data: 
9 Hz)  

WISDM 
[ 22, 23] 

18 total -
ambulation-
related 
activities, 
hand-based 
activities of 
daily living, 
and various 
eating 
activities 

Yes No 51 Accelerometer, 
Gyroscope 

2754 min 

MHealth [ 5] 12 total -
Basic, 
Locomotion, 
and exercise 
activities 

Yes No 10 Accelerometer, 
Gyroscope, 
Magnetome-
ter, 
Electrocardio-
gram (heart 
monitoring) 

Not specified 

Ours Walking 
Upstairs, 
Walking 
Downstairs, 
Lift up, Lift 
down, Null 

Yes Yes 20 Accelerometer, 
Barometer 

525.02 min 
(50 Hz)
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– The next floor for each participant to visit was determined by a random 
number generator, ensuring an unpredictable sequence of floor visits. The 
floor from which the experiment would be started was also determined by 
the random number generator. Since the university building that we used 
has floors numbered from 2 (first accessible floor) to 8 (last accessible floor), 
our random number generator had been set to produce the lowest possible 
random number 2 and the highest possible random number 8. 

– The choice between using the elevator or stairs for each transition was decided 
by a coin toss, ensuring an impartial probability of selecting either mode of 
movement. 

– The participants were advised to act normal and try different variations of 
activities that they would ideally do while performing the movement of taking 
the stairs or taking the Lifts. Some participants chose to carry a handbag or a 
set of books with them, while others used their phones while taking the lifts 
or stairs. The participants were encouraged to do the experiment at their 
own pace and with their own choice of effort level. These variations of the 
different hand movements that the participants did while participating in the 
experiment were recorded using the accelerometer. 

Each participant was instructed to wear the Bangle.js 2 smartwatch through-
out the experiment. They were guided to move between floors based on the 
outcomes of the random number generator and the coin toss. The smartwatch 
continuously recorded accelerometer and barometer data during these activities 
at a frequency of 50 Hz. For each participant, the experiment was conducted 
over a period of approximately 30 min. Participants were given adequate breaks 
between movements to ensure they were not fatigued, which could affect the 
naturalness of their movements. The data collection sessions were scheduled to 
avoid peak hours in the building, minimizing external disruptions and ensuring 
safety. 

Each participant was accompanied by four researchers, each one of these four 
were responsible for one of these tasks: 

1. Video recording the participant’s complete physique for the entire duration 
of the experiment. 

2. Annotating the changes in the events that are taking place, classifying them 
into the 5 classes, and also noting down the time when this change took place. 

3. Generating a random number to decide which floor to go to next. 
4. Tossing the coin to decide whether to take the stairs or the lift to this floor. 

During the data annotation phase, using the video recordings and based on 
the context data from the annotation data files, class labels were manually added 
to the sensor data CSV (Comma-Separated Values) files as ground truth for the 
experiment. 

3.2 Activity Classes 

The dataset was categorized into five distinct classes:
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– Null: Periods in which none of the target activities was performed, includes 
idleness (such as sitting, standing still, walking, or pacing). 

– Lift Up: Movement of participants using the elevator to ascend floors. 
– Lift Down: Movement of participants using the elevator to descend floors. 
– Stairs Up: Movement of participants using the stairs to ascend floors. 
– Stairs Down: Movement of participants using the stairs to descend floors. 

We gathered a total of 525 min (8:45 h) of data from the participants. The 
distribution of this data among the five classes can be seen in Fig. 1. The  exact  
duration of each class in minutes is given in Appendix D Table 5 (Figs. 2, 3, 4 
and 5). 

Fig. 1. The distribution of the activity classes contained in the recorded dataset. The 
Null class makes up 52 %, while the rest of the data consists of the four target classes 
(Lift Up, Lift Down, Stairs Up, Stairs Down). 

3.3 Analysis 

Sensor Data: The sensor data contains detailed information about the move-
ment and pressure measurements taken at various time intervals. This data is 
evaluated to better comprehend movement patterns, acceleration variations, and 
possible activities or behaviors. 

– Time: The timestamp indicating the time at which the data was recorded. 
– Timestamp: A numerical representation of time, in milliseconds. 
– X, Y, Z: Accelerometer data representing the acceleration along the X, Y, 

and Z axes, respectively. 
– Magnitude: Magnitude of the acceleration vector. 
– Pressure: Pressure data. 
– Label: Ground truth label for the data. One of: Stairs Up, Stairs down, Lift 

up, Lift down &Null.
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Fig. 2. Example accelerometer and barometer data for the ‘Stairs Up’ activity class. 
The accelerometer shows the typical patterns of walking. Meanwhile, the pressure 
steadily decreases, with short plateaus occurring on the stairway’s landings. Addition-
ally, the pressure sensor shows some spikes which are likely caused by the movement 
of the arm while walking. 

Fig. 3. Example accelerometer and barometer data for the ‘Lift Up’ activity class. 
While the lift is moving, the participant mostly stood still. We observe the pressure 
decreasing smoothly.
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Fig. 4. Example accelerometer and barometer data for the ‘Stairs Down’ activity class. 
The accelerometer shows a lot of activity, with similar walking patterns as in ‘Stairs 
Up’. In direct comparison, the magnitude and frequency of the movement sensors seem 
higher. The barometer detects the steadily rising pressure, also interrupted by short 
plateaus caused by the landings. 

Fig. 5. Example accelerometer and barometer data for the ‘Lift Down’ activity class. 
The specific participant for this instance was standing very still during the descent. 
We can see the pressure increasing linearly and smoothly.
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Annotation Data: The annotation data adds context to sensor data by des-
ignating specific time points as events or activities. This annotation can help 
segment or categorize sensor data based on various activities. 

– Elapsedtime: The elapsed time since the start of the recording. 
– Comment: Annotations or labels provided at specific time points, such as 

“Lift down”, “Stairs up”, etc. 

During the initial study of the sensor data, it was discovered that the anno-
tation for “Lift” occurrences was completely dependent on the user entering the 
lift. However, it became clear that this approach did not accurately represent the 
user’s experience because the lift may remain stationary for an extended amount 
of time before moving. This difference resulted in an erroneous portrayal of lift 
utilization in the data. 

To address this issue and ensure the lift data’s accuracy, it was decided to 
manually annotate certain data points within the sensor data that corresponded 
to lift occurrences. This manual annotation entailed carefully studying the sensor 
data and determining the exact instant when the lift began moving. 

4 Dataset Validation and Prediction Algorithm 

When constructing a detection algorithm for evaluating sensor data, both the 
data separation method and the detection algorithm selection were carefully 
considered. To evaluate the collected dataset, a random forest classifier (from 
scikit-learn.ensemble libraries) has been chosen as the classification algorithm 
for this problem. Before feeding the raw data into the random forest classifier, 
we are pre-processing the data to extract features using sliding windows. We 
trained and evaluated the model on different window lengths of 4 and 8 s. For 
each of the windows, we are extracting 26 features from the data and the label 
is based on majority voting. During the window creation, windows are discarded 
if no label is assigned to at least 80% of the total number of observations within 
the window. We also discard windows that are too short or are missing data, 
e.g. at the end of a recording. 

We use leave-one-participant-out cross-validation to get a subject-
independent performance evaluation. In the prediction algorithm, the first step 
involves selecting a participant to serve as the test participant, while the remain-
ing 19 participants are used for training the model. For these 19 participants, 
various features are computed as outlined in the data pre-processing stage. These 
features include statistical measures such as averages, minimums, maximums, 
variances, and standard deviations for accelerometer data (X, Y, Z), magnitude, 
and pressure, as well as additional metrics like range, slope, kurtosis, and skew-
ness. 

The class imbalance was addressed using the random oversampling technique, 
which duplicates randomly selected samples from the minority classes until all 
classes have the same number of samples. The imblearn library has been used 
to oversample the data with ‘not majority’ as the sampling strategy. This step
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is meant to prevent the model from being biased towards the majority class 
and to ensure it performs well across all classes. For this proof-of-concept study, 
we did not explore the use of undersampling or a combination of oversampling 
and undersampling. A more sophisticated sampling technique like SMOTE could 
improve our model’s performance further, but was out of the scope of this work. 

To optimize the random forest classifier’s performance, a grid search was con-
ducted to identify the best hyperparameters, specifically the depth of the trees 
(max_depth) and the number of trees in the forest (n_estimators). Grid search 
involves testing various combinations of these hyperparameters to find the com-
bination that yields the highest performance, in our case based on 10-fold cross-
validation results. We used ‘GridSearchCV’ from the scikit-learn library. With 
the optimal hyperparameters identified, the random forest model was trained 
using the 19 participants in each LOSO split’s training data. 

Finally, for each left-out participant, the trained Random Forest model was 
then used to make predictions and evaluate its performance. The model’s per-
formance was evaluated by calculating the accuracy of its predictions, which 
measures the proportion of correctly classified instances out of the total number 
of instances. Additionally, we report the F1-score in three modes of multiclass-
averaging (Micro, Macro, Weighted). 

To measure the impact of the addition of the pressure sensor to the data, 
we performed a small ablation study, repeating the same training and validation 
procedure, but without the pressure data. This enabled us to test the hypothesis, 
that pressure data contains viable information to detect stairs and lift usage, but 
also to distinguish between these two, as well as their directions (up or down). 

5 Results and Discussion 

We show the results of our machine learning experiments in Table 2. The results 
demonstrate significant performance improvements when the time-series data is 
pre-processed using an 8-second window for feature extraction compared to a 
4-second window. The model’s evaluation metrics, including accuracy and F1 
scores, are notably higher with the 8-second window, reaching a macro F1 score 
of 0.86 (8 s) versus 0.76 (4 s). This substantial increase in accuracy highlights the 
importance of selecting an appropriate window size for pre-processing time-series 
data, as it can greatly enhance the classifier’s ability to understand patterns and 
make accurate predictions. 

When comparing the performance of a Random Forest model trained solely 
on acceleration data (IMU data) to one that incorporates both acceleration and 
pressure data, the results clearly show that the inclusion of pressure data sig-
nificantly enhances the model’s ability to accurately distinguish between stair 
use and lift use. Without the barometric sensor, a macro F1-score of only 0.49 
was reached. While acceleration data captures the dynamic movement patterns, 
pressure data can offer insights into altitude changes, such as those experienced 
when ascending or descending stairs. The altitude changes experienced when 
ascending or descending stairs are distinct from the relatively constant altitude
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changes during elevator use. For the evaluation metrics of each participant in 
both time-windows please refer to our GitHub repository. 

Table 2. The model evaluation metrics averaged over all 20 participants for 8-second 
and 4-second time-window. The results are shown with and without the use of the 
recorded pressure data. The columns on the left show results when IMU and the pres-
sure sensor were used, while the columns on the right show the results without the 
pressure data. 

Sensors IMU & Press. IMU only 
Time-window 8 s  4 s 8 s  4 s  
Accuracy 0.88 0.80 0.68 0.65 
F1-Score (Micro-Avg) 0.88 0.80 0.68 0.65 
F1-Score (Macro-Avg) 0.86 0.76 0.49 0.46 
F1-Score (Weighted) 0.88 0.80 0.67 0.63 

Evaluating F1 scores in micro, macro, and weighted modes offers a compre-
hensive understanding of the model’s performance across different aspects of the 
data, especially when data is imbalanced. The macro F1 score is particularly 
informative in scenarios with class imbalance because it reveals the model’s 
performance across each class individually. The weighted F1 score provides a 
balanced view that accounts for class imbalance while still reflecting the overall 
performance across all classes. The table of complete metrics for each partic-
ipant in 8-second and 4-second time windows along with the best parameter 
values for max_depth and n_estimators hyperparameters while fitting random 
forest classifier can be found in Appendix B. 3 and C.4 respectively. 

Figures 6 and Appendix A Fig. 7 present the confusion matrix of the model 
over an 8-second and a 4-second time window respectively. The confusion matrix 
offers a detailed breakdown of the model’s performance by presenting the counts 
of true positives, true negatives, false positives, and false negatives for each class. 
In Fig. 6, we can observe that most prediction mistakes are related to the null 
class and that the classes related to taking stairs and taking the lift are rarely 
confounded. 

In the feature importance analysis conducted across all 26 features for each 
of the 20 participants, it was observed that the feature “slope_pressure” con-
sistently exhibited the highest importance score. This finding underscores the 
significance of pressure values in effectively distinguishing between the five dis-
tinct classes. The steepness or gradient of pressure changes, as represented by the 
slope feature, appears to be particularly informative in differentiating between 
activities involving changes in elevation, such as ascending or descending stairs 
and using lifts. The feature importance scores of all 26 features are presented in 
the Appendix E as Table 6. 

Overall, the evaluation of the collected dataset with the explained methods 
shows that lift and stair usage can be distinguished and differentiated from the
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Fig. 6. Confusion Matrix for 8-second windows. Most predictions are correct (diagonal 
of the matrix). We observe that most mistakes revolve around the null class and that 
‘stairs’ and ‘lift’ can be separated reliably by the model. 

background class with a sufficiently high accuracy and F1 score, given the set of 
wearable sensors. 

6 Conclusions 

This paper presents the possibility of differentiating movement into five different 
classes with acceleration and pressure readings from a smartwatch. The feature 
importance score analysis depicts the importance of pressure measurement in 
this particular classification problem. Barometric measuring is a sensing modal-
ity seldom used in HAR. This work serves as a proof of concept, highlighting 
the potential of utilizing pressure data in activity recognition. The findings indi-
cate that pressure-related features, particularly the slope of pressure changes, 
are highly informative for detecting and classifying different movement patterns 
related to altitude changes. This insight could pave the way for more advanced 
and accurate activity recognition systems, which have applications in various 
applications such as health monitoring, fitness tracking, and smart home envi-
ronments. 

Furthermore, the effectiveness of different window sizes for pre-processing 
time-series data in the context of activity recognition using a random forest 
classifier is also investigated. Our findings highlight once more the critical role
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of window size selection in enhancing model performance. This underscores the 
importance of capturing more comprehensive temporal information to better 
discriminate between activity classes. 

We believe the main contributions of our dataset and this paper’s experiments 
are relevant to the Activity Recognition community: 

– A dataset dedicated specifically to taking lifts versus taking stairs detection 
was collected and annotated 

– Our experiment serves as a proof of concept for the use of barometric air 
pressure data in Activity Recognition 

– We have investigated especially the window size in such time-series data pre-
processing 

– We analyzed Feature Importance scores to investigate the impact of both 
sensors and features 

7 Future Work and Enhancements 

The dataset used in this study presents opportunities for further investigation, 
particularly in addressing imbalances among the five activity classes. Despite 
our efforts to collect data in an unbiased manner, the inherent variability in 
participants’ activities has led to class imbalances. The lifts are faster than the 
stairs, which is one of the main reasons for the imbalance in data. In longer 
and real-world settings, the data is likely to be even more imbalanced. Future 
studies could explore strategies to mitigate this imbalance and to deal with it 
both during data collection and real-time inference. 

Expanding the dataset size is another avenue for future research. Currently, 
data collection occurs within a single building, potentially limiting the gener-
alizability of the model. By collecting data from diverse environments and set-
tings, including outdoor and indoor scenarios, we can enhance the model’s ability 
to generalize across different contexts. Additionally, increasing the dataset size 
by recruiting participants from various demographics and activity levels can 
enrich the diversity and representativeness of the dataset. With a larger dataset, 
implementing neural networks such as Long Short-Term Memory (LSTM) or 
transformer-based networks becomes feasible, allowing for the exploration of 
deep learning architectures capable of capturing even more complex temporal 
dependencies. 

Furthermore, the definition of the Null class can be refined to incorporate 
a broader range of activities. While the null class primarily represents periods 
of inactivity, such as standing or sitting, future studies could consider includ-
ing additional activities like cycling, jogging, or walking within this class. This 
expansion would provide a more comprehensive representation of daily activ-
ities, thereby improving the model’s performance in real-world settings where 
activities may be more diverse and dynamic.



234 H. B. Karande et al.

Acknowledgements. This project is funded by the Deutsche Forschungsgemeinschaft 
(DFG, German Research Foundation) - 425868829 and is part of Priority Program 
SPP2199 Scalable Interaction Paradigms for Pervasive Computing Environments. 

Disclosure of Interests. The authors have no competing interests to declare that 
are relevant to the content of this article. 

A Confusion Matrix for 4-Seconds Time-Window 

Fig. 7. Confusion Matrix for 4-second windows.
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B Evaluation Metrics for 20 Participants in 8-Seconds 
Time-Window 

The following table presents evaluation metrics and also suitable hyper-
parameter values for random forest found by GridSearchCV for each participant 
in 8-second windows. 

Table 3. The model evaluation metrics (Acc for Accuracy, Est.s for Estimators) for 
all 20 participants for 8-second time windows along with hyperparameter values. 

No. Acc. macro F1 weighted F1 Depth Est.s 
1 0.84 0.83 0.84 None 200 
2 0.85 0.82 0.85 None 250 
3 0.90 0.89 0.90 None 250 
4 0.82 0.81 0.83 15 275 
5 0.96 0.94 0.96 15 250 
6 0.87 0.86 0.87 20 200 
7 0.81 0.79 0.81 15 225 
8 0.89 0.80 0.88 20 200 
9 0.90 0.87 0.90 None 275 
10 0.91 0.85 0.90 20 250 
11 0.92 0.91 0.92 None 300 
12 0.90 0.90 0.90 20 200 
13 0.87 0.87 0.86 20 300 
14 0.89 0.88 0.89 None 250 
15 0.87 0.87 0.87 15 350 
16 0.88 0.89 0.88 None 300 
17 0.86 0.82 0.86 None 300 
18 0.88 0.89 0.88 20 300 
19 0.86 0.79 0.86 20 275 
20 0.85 0.84 0.85 20 225 

C Evaluation Metrics for 20 Participants in 4-Seconds 
Time-Window 

The following table presents evaluation metrics and also suitable hyper-
parameter values for random forest found by GridSearchCV for each participant 
in 4-second windows.
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Table 4. The model evaluation metrics (Acc for Accuracy, Est.s for Estimators) for 
all 20 participants for 4-second time windows along with hyperparameter values. 

No. Acc. macro F1 weighted F1 Depth Est.s 
1 0.77 0.72 0.77 None 350 
2 0.81 0.75 0.80 None 350 
3 0.81 0.76 0.81 None 250 
4 0.77 0.73 0.78 None 225 
5 0.78 0.73 0.78 None 200 
6 0.79 0.76 0.79 None 200 
7 0.75 0.72 0.76 None 250 
8 0.78 0.75 0.77 None 350 
9 0.85 0.80 0.84 None 250 
10 0.84 0.70 0.83 None 350 
11 0.87 0.70 0.83 None 350 
11 0.87 0.87 0.87 None 325 
12 0.80 0.78 0.80 None 325 
13 0.80 0.74 0.79 None 250 
14 0.80 0.72 0.80 None 325 
15 0.83 0.82 0.83 None 275 
16 0.81 0.79 0.81 None 300 
17 0.79 0.74 0.79 None 225 
18 0.77 0.77 0.77 None 275 
19 0.83 0.78 0.83 None 275 
20 0.77 0.73 0.76 None 200 

D Total Time Duration for Each Class in Minutes 

Table 5. Duration of data collected for each class in minutes 

class Minutes 
Lift Down 77.60 
Stairs Down 59.20 
Stairs Up 39.88 
Lift Up 75.36 
Null 272.98 

In total 152.95 min of data was collected for the lift classes and 99.08 min of data 
was collected for the stairs classes.



Raising the Bar(ometer): Identifying Stair and Lift Usage 237

E Feature-Scores for 26 Features Averaged over 20 
Participants in 8-Seconds and 4-Seconds Time-Window 

Table 6. Feature scores for all features extracted over 8-seconds and 4-seconds window 

Feature 8-s 4-s 
slope_pressure 0.313075423 0.24633301 
var_magnitude 0.084037245 0.079129592 
std_magnitude 0.082081804 0.072645593 
max_magnitude 0.045221187 0.051749068 
std_pressure 0.043930271 0.030623624 
var_pressure 0.043276678 0.031141125 
min_magnitude 0.036980905 0.032534554 
kurtosis_pressure 0.036261681 0.029589955 
min_accX 0.027751388 0.028021951 
range_pressure 0.02538081 0.025415817 
std_accX 0.023843761 0.034228149 
var_accX 0.023416437 0.036206354 
std_accZ 0.020009935 0.02788877 
var_accZ 0.018040161 0.026410733 
avg_accX 0.016969519 0.02231106 
max_accX 0.016947775 0.022569319 
avg_magnitude 0.0169168 0.027153292 
skew_pressure 0.015893485 0.019383114 
min_accZ 0.015800581 0.020498954 
max_accY 0.015392096 0.020042188 
std_accY 0.014100437 0.021778705 
var_accY 0.01405132 0.021217197 
avg_accZ 0.013379868 0.019155533 
min_accY 0.013372234 0.017988043 
avg_accY 0.012822567 0.017824296 
max_accZ 0.011045632 0.018160005 
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