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Abstract. The proliferation of wearable technology has revolutionized 
sports science, providing detailed insights into athlete performance and 
physical condition. However, the use of ECG in dynamic, high-contact 
sports like handball presents significant challenges. This paper introduces 
HeartTrack, an open-source wearable electrocardiogram (ECG) monitor-
ing system designed specifically for monitoring athlete exertion in real-
world sporting conditions. The system employs a distributed architecture 
based on the Message Queuing Telemetry Transport (MQTT) protocol 
for robust and decoupled data handling. Firstly, the system provides a 
real-time dashboard for the immediate visualization of the incoming ECG 
waveform alongside the calculated physiological parameters. Secondly, we 
report on a system validation study conducted during a handball train-
ing session, demonstrating the system’s capability to quantify significant
changes in cardiovascular metrics corresponding to player exertion. The
key findings confirmed that the system could effectively track significant
changes in heart rate and heart rate variability that correspond directly
to varying levels of physical exertional activity. The system design and
software is shared at: hearttrack.cloud.
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1 Introduction 

The proliferation of wearable technology has significantly advanced sports sci-
ence, enabling more accessible insights into athlete performance and physical 
condition. While metrics like speed and distance, commonly tracked by GPS and 
accelerometers, offer valuable information about an athlete’s external load, they 
often fail to capture the internal physiological load, which is the physiological 
response to the exercise performed. This internal load is critical for o ptimizing
training, preventing overtraining, and reducing injury risk. Electrocardiography
(ECG), which measures the heart’s electrical activity, offers a direct measure-
ment of the cardiovascular system’s response to physical stress, making it a gold
standard for assessing player exertion.
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However, the use of ECG in dynamic, high-contact sports such as handball 
poses significant challenges. Commercial systems are often expensive and func-
tion as proprietary “black boxes,” limiting both data access and customization 
for researchers. In this work, we use the term dynamic sports to describe activi-
ties with irregular, high-intensity movement patterns and frequent body contact, 
for example handball, basketball, or rugby. These conditions generate far more
severe motion artifacts than those typically observed in endurance sports like
running or cycling. This distinction underlines why developing robust, low-cost
ECG monitoring systems for these contexts is particularly challenging and nec-
essary.

There is a clear need for accessible, open-source tools that allow researchers 
and practitioners to not only collect physiological data in these challenging en vi-
ronments but also to study and address these fundamental signal quality issues.

This paper introduces HeartTrack, an open-source wearable ECG system 
designed specifically for monitoring athlete exertion in real-world sporting con-
ditions. Our contribution is threefold. First, we present the complete hardware 
and software design of the HeartTrack system, which is fully open-source to 
encourage adaptation and further development by the community. Second, we 
report on a system validation study conducted during a handball training ses-
sion, demonstrating the system’s capability to track meaningful trends in player
exertion through heart rate monitoring. Third, we provide a crucial characteriza-
tion of the primary limitation we encountered: the significant impact of motion
artifacts on signal quality during high-intensity athletic movements.

By validating our system in a practical setting and transparently reporting 
on its limitations, we provide a realistic baseline for on-body ECG sensing in 
dynamic sports. This work serves as both a practical tool for sports scientists 
and a foundational study for future research aimed at developing robust algo-
rithms to mitigate motion artifacts. This paper is structured as follows: We first 
review related work on wearable ECG systems and motion artifact challenges. 
We then detail the HeartTrack system architecture, followed by the methodol-
ogy of our validation study. Subsequently, we present the results, focusing on
both successful exertion tracking and the analysis of signal artifacts. Finally, we
discuss the implications of our findings and outline future work to enhance the
system’s reliability.

2 Related Work 

The foundation of this research rests on three key areas: the landscape of wear-
able ECG devices, the persistent challenge of motion artifacts in physiological
sensing, and the specific application of monitoring player exertion in handball.

Wearable ECG devices are becoming increasingly prevalent for monitoring 
the cardiac activity of athletes and health-conscious individuals. Their poten-
tial for detecting arrhythmias and other cardiac events in real-world settings is
significant [22,23]. Research has shown that these devices can be non-inferior 
to standard care for arrhythmia detection [10]. A variety of form factors exist,
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from user-friendly smartwatches and handheld devices to patches and mobile 
telemetry systems designed for continuous monitoring [4]. 

However, the scientific community acknowledges key limitations. Sanchis-
Gomar et al. [23] highlight a scarcity of large-scale trials focused on identify-
ing exercise-related arrhythmias with wearables. While popular devices like the 
Apple Watc h and Fitbit have demonstrated acceptable heart rate accuracy in
everyday conditions [17], recent studies confirm their accuracy declines signifi-
cantly during intense exercise [14], especially for sensitive metrics like Heart Rate 
Variability (HRV) [3,8]. This gap underscores a critical need for standardized 
validation protocols to ensure the reliability of these devices in athletic contexts
[21], a need that our present validation study of the H eartTrack system aims to
address.

Our work is positioned within a landscape of diverse wearable sensors, each 
with distinct trade-offs for athletic monitoring. Commercial chest-strap systems, 
such as the Polar H10, are well-regarded for providing high-quality ECG data 
but function as proprietary “black boxes” that limit raw data access and cus-
tomization for researchers. Consumer smartwatches, including the Apple Watch, 
offer user-friendly interfaces but primarily rely on photoplethysmography (PPG) 
for continuous heart rate monitoring, a method susceptible to motion artifacts
during intense exercise. While they offer on-demand single-lead ECGs, they do
not support continuous raw ECG streaming suitable for in-depth analysis. On
the other end of the spectrum, open-source research platforms like BITalino
[13,24] offer high flexibility and data access but at a substantially higher cost, 
with kits starting at over $149. The Heart Track system was specifically designed 
to fill a gap between these options, offering a unique combination of continuous 
250 Hz ECG data streaming in a fully open-source framework at a hardware 
cost of approximately e18 per unit. This makes it a financially accessible and 
customizable tool for sports science researchers who require raw, high-resolution 
physiological data. The single greatest challenge to o btaining ECG data dur-
ing physical activity is the presence of motion artifacts. These artifacts, caused
by electrode movement and muscle contractions, can mask the underlying car-
diac signal and make clinical interpretation or automated analysis unreliable. A
significant body of research is dedicated to mitigating this noise.

Two primary approaches exist: wavelet-based methods and adaptive filter-
ing. While wavelet transforms can be useful for improving signal correlation, 
they often in troduce phase variability and are less suited for real-time applica-
tions [5,25]. In contrast, adaptive filtering algorithms have consistently shown 
superior performance. Studies have demonstrated that adaptive filters, particu-
larly those utilizing the Least Mean Squares (LMS) algorithm and its v ariants
(IPNLMS, PNLMS, BLMS), significantly outperform wavelet-based and tradi-
tional methods in reducing motion artifacts [2,7]. The use of a secondary sensor, 
such as an accelerometer, to provide a reference signal for the motion noise can
further enhance the clarity of the filtered ECG signal [9]. Overall, adaptive fil-
tering remains the state-of-the-art and preferred approach for motion artifact
reduction in wearable ECG monitoring [1,18,20].
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In dynamic team sports like handball, understanding player exertion is crucial 
for optimizing performance and training regimens. Research has consistently 
shown that physiological markers, particularly heart rate, are strongly linked to 
performance outcomes and vary significantly by playing position. For instance, 
studies ha ve found that wing players often exhibit higher heart rates and superior
aerobic capacity compared to backcourt players and pivots [11,16]. Conversely, 
backcourt players tend to cover more distance during matches, also resulting in
high average heart rates [19]. 

Furthermore, research highlights the importance of repeated sprint and jump-
ing ability, especially for wing players [12], and the negative correlation between 
body fat and running speed across all positions [6]. The consensus in the litera-
ture is that aerobic capacity is a key d ifferentiator of performance among players
[15]. This body of work underscores the clear need for position-specific training 
and validates the use of heart rate as a primary metric for assessing internal 
training load. Our study lev erages these findings by validating an ECG-based
system specifically within the demanding context of a handball training session.

3 The HeartTrack System 

3.1 Hardware Design 

Fig. 1. The HeartTrack wearable sensor unit with electrode placement on a participant



254 J. Pöhler et al.

A low-cost, wearable electrocardiogram (ECG) monitoring system was devel-
oped to capture, transmit, and analyze cardiac biopotentials. The data acqui-
sition hardware is housed within a custom 3D-printed enclosure worn on the 
chest. It comprises an AD8232 analog front-end for ECG signal conditioning, 
which is subsequently digitized by a 16-bit ADS1115 analog-to-digital converter 
to ensure high-resolution signal capture. The sensor data is captured with a res-
olution of 250 Hz. An ESP32-based microcontroller (Lolin32 Lite) orchestrates 
device operations, including sensor interfacing and wireless communication. The
firmware, developed in C++, is responsible for acquiring the digital ECG signal,
checking sensor-body contact, monitoring battery levels, and synchronizing time
with an NTP server to guarantee accurate timestamping for all data points.

3.2 System Architecture and Data Transmission 

The system employs a distributed architecture based on the Message Queuing 
Telemetry Transport (MQTT) protocol for robust and decoupled data handling. 
The wearable device connects to the network via Wi-Fi and publishes the raw, 
timestamped ECG data, formatted as a JSON object, to a central MQTT broker. 
This broker disseminates the information to two independent client applications. 
The first client is a Python script that subscribes to the raw data feed. This script
utilizes the Neurokit2 library to perform real-time signal processing, including
signal cleaning, R-peak detection, and the subsequent calculation of heart rate
(BPM) and heart rate variability (HRV) metrics. These computed features are
then published back to the MQTT broker on a separate topic.

3.3 Real-Time Processing and Visualization 

Fig. 2. The real-time monitoring dashboard built in Node-RED, displaying data from
nine concurrent participants (Color figure online)
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Concurrently, a second client, built on the Node-RED platform, subscribes to 
both the raw data and the processed-data topics from the MQTT broker. This 
component s erves a dual purpose. Firstly, it provides a real-time dashboard (see
2) for the immediate visualization of the incoming ECG waveform alongside the 
calculated physiological parameters. Secondly, it ensures data persistence by sys-
tematically logging the raw, timestamped ECG signal to a comma-separated val-
ues (CSV) file, making the complete dataset available for comprehensive offline
analysis.

4 Results 

The developed wearable ECG system was deployed to monitor cardiovascular 
dynamics during a 75-minute training session with a female handball team. Data 
collection was attempted for 10 athletes, with nine of the ten sensor units func-
tioning correctly throughout the entire session, resulting in a 90% success rate 
for data acquisition. One unit failed to maintain a stable connection mid-session 
and its data w as excluded from further analysis. The nine complete datasets
were successfully correlated with a concurrent video recording of the training,
which enabled the annotation of distinct activity phases: a running warm-up,
static stretching, specific handball drills, and scrimmage play.

Analysis of the acquired data revealed distinct physiological responses cor-
responding to the annotated training phases. During the initial low-intensity 
stretching period, baseline heart rate (BPM) values were stable. The subsequent 
running warm-up elicited a steady, progressive increase in heart rate across all 
participants. For example, the average BPM rose from a baseline of approxi-
mately 75 BPM to 140 BPM by the conclusion of the warm-up. This was accom-
panied by a statistically significant decrease in Heart Rate Variability (RMSSD),
from a mean of 45±10 ms during stretching to 12±5 ms during scrimmage play
(p < .001).

The most dynamic cardiovascular responses were observed during the high-
intensity drills and scrimmage play. During these periods, the system recorded 
rapid fluctuations in heart rate, with peak values for some athletes exceeding 
180 BPM during intense, game-like situations. The real-time dashboard pro-
vided immediate visualization of these rapid fluctuations in heart rate. Concur-
rently, HRV metrics were significantly suppressed throughout these high-exertion 
phases, reflecting the high physiological stress of the sport. Despite the vigorous,
high-impact movements inherent to handball, the nine functional units consis-
tently captured ECG waveforms, and the complete, timestamped raw data was
reliably logged to CSV files for each athlete, providing a comprehensive dataset
for detailed post-session analysis.

4.1 Motion Artifact Characterization 

In line with the third contribution of this work, this section provides a character-
ization of the impact of motion artifacts on signal quality. Figure 3 (top) displays
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Fig. 3. Representative ECG data segments. (Top) A 7-second recording during a warm-
up, showing a clean signal and stable heart rate (around 118 BPM). (Bottom) A 
60-second recording during a high-intensity game scene, showing significant motion
artifacts and an erratic, higher heart rate (around 127.6 BPM)

a 7-second segment from a participant during the running warm-up, illustrating 
a period of high signal quality. The data is characterized by high signal quality 
and a clean, consistent ECG morphology, with clearly discernible P, QRS, and T 
waves. The corresponding heart rate is elevated but stable at approximately 118 
BPM, which is indicative o f steady-state aerobic exercise. The overlay of individ-
ual heartbeats shows minimal variation, confirming the high fidelity of the signal
captured during controlled movement. This is contrasted with Fig. 3 (bottom), 
which shows a segment heavily affected by motion artifacts during high-intensity 
gameplay. This recording reflects the challenges of data acquisition in a dynamic
sporting environment. The signal exhibits significant motion artifacts, leading to
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periods of degraded quality, particularly around the 40-second mark. The heart 
rate is not only higher on average (127.6 BPM) but also highly erratic, fluctu-
ating rapidly in response to the unpredictable demands of the game. The wide 
scatter of the overlaid individual heartbeats is a result of both this physiological 
variability and the residual noise i n the signal. These figures visually confirm
that while the system can capture the high-intensity cardiovascular response to
gameplay, data quality is inherently more variable compared to more controlled
exercise conditions.

5 Discussion 

The primary goal of this project was to develop and validate a low-cost, wearable 
ECG system in a demanding, real-world athletic environment. The results con-
firm that the system successfully captured physiological data with enough fidelity 
to differentiate between training phases. The successful acquisition of nine com-
plete datasets over 75min, despite the high-impact and dynamic nature of the
sport, underscores the viability of using inexpensive, custom-built hardware for
field-based research.

The quantitatively distinct cardiovascular responses across various training 
phases, from the stable, elevated heart rate during the warm-up to the erratic, 
peak responses during scrimmage play, highlights the system’s sensitivity to 
changing metabolic demands. The statistically significant decrease in RMSSD 
between low- and high-intensity phases, quantitatively confirms the expected 
swing in autonomic nervous system balance. This demonstrates that the cap-
tured data aligns with established physiological principles (e.g., an increase in 
heart rate and a decrease in heart rate variability with rising exercise inten-
sity), which allows for valid physiological interpretation. The accompanying
video annotations proved invaluable, providing the necessary context to move
beyond simple data logging toward a quantitative analysis of athlete physiology
in response to specific stimuli.

However, the study also revealed important limitations. The failure of one 
of the ten sensor units serves as a crucial reminder of the reliability challenges 
inherent in low-cost electronics compared to medical-grade equipment. Further-
more, the motion artifacts observed in the data during high-intensity gameplay, 
as illustrated in the results, are a significant consideration. While the clean-
ing algorithms from the Neurokit2 library were effective, periods of severe noise 
can obscure the underlying signal, potentially affecting the accuracy of beat 
detection and subsequent HRV calculations. This highlights a critical trade-off 
between cost, wearability, and signal fidelity in extreme motion contexts. While 
this study focused on validating the physiological data capture, a quantitative 
evaluation of the MQTT data transmission characteristics (e.g., latency, packet
loss) or a direct comparison of different signal filtering algorithms was outside the
scope of this initial validation. These remain important areas for future technical
evaluation. We acknowledge that this study was conducted with an all-female
cohort. Future work should include male athletes to investigate potential dif-
ferences in signal quality related to chest anatomy and electrode placement.
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Furthermore, the current prototype shown in Fig. 1, while functional for a single 
session, requires further refinement to improve long-term comfort and robustness 
for longitudinal studies. Future work should focus on addressing these limita-
tions. Improvements to the hardware, such as a more robust enclosure design 
and the use of advanced motion-cancellation electrodes, could mitigate artifacts. 
On the software side, implementing more sophisticated, real-time artifact detec-
tion and signal reconstruction algorithms could further enhance data quality. 
Additionally, future studies could leverage this system to investigate more com-
plex research questions, such as quantifying training load, monitoring athlete 
fatigue over a season, or providing real-time biofeedback to coaches and players. 
Taken together, these findings map directly to the three contributions outlined in 
the introduction. First, the open-source nature of HeartTrack makes it a reusable 
platform for both applied sports monitoring and methodological research, filling
a gap left by closed commercial systems. Second, our validation study during
a real-world handball training session demonstrated that despite the challenges
of high-intensity motion, the system reliably tracked meaningful trends in heart
rate and HRV, confirming its practical usability for exertion monitoring. Third,
our analysis of motion artifacts provides a transparent characterization of the
system’s primary limitation, offering a realistic baseline for future algorithmic
improvements.

6 Conclusion 

This study successfully demonstrated the design, implementation, and validation 
of a wearable, low-cost ECG monitoring system. The system proved capable of 
capturing and analyzing cardiovascular data from athletes during a live hand-
ball training session. The key findings confirmed that the device could effec-
tively track significant changes in heart rate and heart rate variability that 
correspond directly to varying levels of physical exertion. Despite challenges 
related to motion artifacts and hardware reliability, the p roject establishes a
framework for applying affordable, custom-built sensor technology in applied
sports science. This work provides a foundation for future research into accessi-
ble, field-based physiological monitoring, potentially enabling more widespread
and frequent analysis of athlete performance and well-being.
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16. Mohorič, U., Šibila, M., Štrumbelj, B.: Positional differences in some physiological 
parameters obtained by the incremental field endurance test among elite handball
players. Kinesiology 53(1), 3–11 (2021). https://doi.org/10.26582/k.53.1.1 

17. Nelson, B.W., Allen, N.B.: Accuracy of consumer wearable heart rate measurement 
during an ecologically valid 24-hour period: i ntraindividual validation study. JMIR
mHealth uHealth 7(3), e10828 (2019). https://doi.org/10.2196/10828

https://doi.org/10.1080/17434440.2024.2438313
https://doi.org/10.1080/17434440.2024.2438313
https://doi.org/10.1080/17434440.2024.2438313
https://doi.org/10.1080/17434440.2024.2438313
https://doi.org/10.1080/17434440.2024.2438313
https://doi.org/10.1080/17434440.2024.2438313
https://doi.org/10.1080/17434440.2024.2438313
https://doi.org/10.1080/17434440.2024.2438313
https://doi.org/10.1016/j.bspc.2006.01.001
https://doi.org/10.1016/j.bspc.2006.01.001
https://doi.org/10.1016/j.bspc.2006.01.001
https://doi.org/10.1016/j.bspc.2006.01.001
https://doi.org/10.1016/j.bspc.2006.01.001
https://doi.org/10.1016/j.bspc.2006.01.001
https://doi.org/10.1016/j.bspc.2006.01.001
https://doi.org/10.1016/j.bspc.2006.01.001
https://doi.org/10.1016/j.bspc.2006.01.001
https://doi.org/10.1016/j.bspc.2006.01.001
https://doi.org/10.35784/acs-2024-10
https://doi.org/10.35784/acs-2024-10
https://doi.org/10.35784/acs-2024-10
https://doi.org/10.35784/acs-2024-10
https://doi.org/10.35784/acs-2024-10
https://doi.org/10.35784/acs-2024-10
https://doi.org/10.35784/acs-2024-10
https://doi.org/10.35784/acs-2024-10
https://doi.org/10.2478/folmed-2018-0012
https://doi.org/10.2478/folmed-2018-0012
https://doi.org/10.2478/folmed-2018-0012
https://doi.org/10.2478/folmed-2018-0012
https://doi.org/10.2478/folmed-2018-0012
https://doi.org/10.2478/folmed-2018-0012
https://doi.org/10.2478/folmed-2018-0012
https://doi.org/10.2478/folmed-2018-0012
https://doi.org/10.1145/3326172.3326214
https://doi.org/10.1145/3326172.3326214
https://doi.org/10.1145/3326172.3326214
https://doi.org/10.1145/3326172.3326214
https://doi.org/10.1145/3326172.3326214
https://doi.org/10.1145/3326172.3326214
https://doi.org/10.1145/3326172.3326214
https://doi.org/10.1007/s40138-022-00248-x
https://doi.org/10.1007/s40138-022-00248-x
https://doi.org/10.1007/s40138-022-00248-x
https://doi.org/10.1007/s40138-022-00248-x
https://doi.org/10.1007/s40138-022-00248-x
https://doi.org/10.1007/s40138-022-00248-x
https://doi.org/10.1007/s40138-022-00248-x
https://doi.org/10.1007/s40138-022-00248-x
https://doi.org/10.1007/s40138-022-00248-x
https://doi.org/10.1519/jsc.0b013e318291b713
https://doi.org/10.1519/jsc.0b013e318291b713
https://doi.org/10.1519/jsc.0b013e318291b713
https://doi.org/10.1519/jsc.0b013e318291b713
https://doi.org/10.1519/jsc.0b013e318291b713
https://doi.org/10.1519/jsc.0b013e318291b713
https://doi.org/10.1519/jsc.0b013e318291b713
https://doi.org/10.5220/0010905400003123
https://doi.org/10.5220/0010905400003123
https://doi.org/10.5220/0010905400003123
https://doi.org/10.5220/0010905400003123
https://doi.org/10.5220/0010905400003123
https://doi.org/10.5220/0010905400003123
https://doi.org/10.3390/bioengineering10020254
https://doi.org/10.3390/bioengineering10020254
https://doi.org/10.3390/bioengineering10020254
https://doi.org/10.3390/bioengineering10020254
https://doi.org/10.3390/bioengineering10020254
https://doi.org/10.3390/bioengineering10020254
https://doi.org/10.5812/asjsm.24712
https://doi.org/10.5812/asjsm.24712
https://doi.org/10.5812/asjsm.24712
https://doi.org/10.5812/asjsm.24712
https://doi.org/10.5812/asjsm.24712
https://doi.org/10.5812/asjsm.24712
https://doi.org/10.5812/asjsm.24712
https://doi.org/10.26582/k.53.1.1
https://doi.org/10.26582/k.53.1.1
https://doi.org/10.26582/k.53.1.1
https://doi.org/10.26582/k.53.1.1
https://doi.org/10.26582/k.53.1.1
https://doi.org/10.26582/k.53.1.1
https://doi.org/10.26582/k.53.1.1
https://doi.org/10.26582/k.53.1.1
https://doi.org/10.26582/k.53.1.1
https://doi.org/10.2196/10828
https://doi.org/10.2196/10828
https://doi.org/10.2196/10828
https://doi.org/10.2196/10828
https://doi.org/10.2196/10828
https://doi.org/10.2196/10828
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