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Abstract: Many systems rely on the expertise from human operators, who have acquired their
knowledge through practical experience over the course of many years. For the detection of anomalies
in industrial settings, sensor units have been introduced to predict and classify such anomalous
events, but these critically rely on annotated data for training. Lengthy data collection campaigns
are needed, which tend to be combined with domain expert annotations of the data afterwards,
resulting in costly and slow process. This work presents an alternative by studying live annotation
of rare anomalous events in sensor streams in a real-world manufacturing setting by experienced
human operators that can also observe the machinery itself. A prototype for visualization and in
situ annotation of sensor signals is developed with embedded unsupervised anomaly detection
algorithms to propose signals for annotation and which allows the operators to give feedback on
the detection and classify anomalous events. This prototype allowed assembling a corpus of several
weeks of sensor data measured in a real manufacturing surrounding and was annotated by domain
experts as an evaluation basis for this study. The evaluation of live annotations reveals high user
motivation after getting accustomed to the labeling prototype. After this initial period, clear anomalies
with characteristic signal patterns are detected reliably in visualized envelope signals. More subtle
signal deviations were less likely to be confirmed an anomaly due to either an insufficient visibility in
envelope signals or the absence of characteristic signal patterns.
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1. Introduction

Collecting labels for rare anomalous events is notoriously difficult. Often, frequent spurious
signal outliers dominate seemingly detected anomalies and shadow the few, real anomalies. This is
even more difficult when anomalies are characterized by more subtle signal deviations than these
spurious signal outliers. Depending on the chosen anomaly detection algorithm, this dominance of
spurious outliers typically results in either a high false positive rate (FPR) or false negative rate (FNR).
This is even more the case for purely unsupervised models.

While a large amount of studies on collecting rare event labels in medical or social applications
exists, this study is concerned with industrial manufacturing surroundings. In the chosen machine
tool monitoring application, spurious outliers are given by frequent process adaptations while real
anomalies are typically rare. The reason for the latter is that machines in a real-world production
surrounding are typically used for processing the same type of workpiece over a long period of time,
spanning several months to years. Thus, robust process parameter settings are known due to the
well-understood machine behavior for this exact workpiece type, which in turn results in anomalies
appearing only rarely.

In order to train anomaly detection models for a subset of specific known anomalies
(e.g., imbalance, belt tension, and wear of ball screw drives or spindles), we can intentionally choose
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insensible process parameters to provoke these types of anomalies. Then, dedicated measurement
campaigns for these anomaly types allow for studying how these types of anomalies manifest regarding
change of signal behavior. This approach comes with short measurement campaigns (as the precious
anomalous labels can be provoked intentionally) and, thus, only a small amount of additional costs
due to loss of production time. Furthermore, we obtain high-quality ground truth labels for these
anomalies as we control the anomaly-causing machine parameters. However, several drawbacks arise:

• Provoking anomalies is still expensive, as retooling the machine for these provocations is
time consuming. Furthermore, precious production time is lost as the anomalously processed
workpieces cannot be used after the experiment. Thus, annotating data sets with anomaly
labels via dedicated measurement campaigns always comes with a trade-off: The higher the
amount of labeled data the better the performance of (semi-)supervised anomaly classifiers
but also the higher the loss in production time and thus increase in costs. The availability of
annotated datasets that also tend to be limited in size and the inherent cost/accuracy trade-off are
well-known problems in industrial manufacturing applications and have led to domain-specific
approaches optimizing the predictive quality with the given data sets of limited size [1].

• Many anomalies cannot be provoked intentionally, either due to unknown cause–effect relations
of these anomalies or due to severe risks of long-term machine part damages.

• If anomalies can be provoked intentionally, the anomalies do not emerge in a natural way. As it
is often nontrivial to distinguish between cause and effect in the signal behavior, it is unclear
whether the studied abnormal behavior will generalize to real-world anomalies.

• Finally, only anomaly types known in advance can be provoked.

Thus, collecting data and corresponding annotations “in the wild” has the potential to yield more
realistic labels. Typically, these measurement campaigns are combined with retrospective annotation
of signals by domain experts. This retrospective annotation by domain expert results in high costs for
rare anomaly scenarios, especially when the data is not pre-filtered regarding its preciousness (as a
high fraction of measured data will not be illustrating anomalous machine behavior). Furthermore,
the context knowledge about machine behavior during data collection is lost.

We propose a third alternative approach by prompting anomalous events to the machine operators
for label feedback directly during everyday processing of workpieces. Prompting only suspicious
signals for annotation reduces the labeling effort while live annotation minimizes the additional time
effort induced by signal annotation. Thus, live annotation allows collecting anomaly labels in the
wild for low costs, as we do not have to rely on separate measurement campaigns but can collect data
during normal operation of the machine tools. Furthermore, the possibility to visually inspect the
machine gives the machine operators valuable, additional information during live annotation of the
collected data. Limitations to this approach might be given by the necessity of giving timely feedback
to proposed anomalies (i.e., reduced label quality by time pressure).

For our experiments, we equipped a grinding machine in a real-world production surrounded
with multiple microelectromechanical systems (MEMS) vibration sensors for long-term measurements.
Additionally, we developed and integrated both hardware and software of a labeling prototype,
including the design of a suitable graphical user interface (GUI), for in situ annotation of sensor signals.
We developed this new prototype instead of relying on smartphone- or tablet-based human–machine
interfaces in order to fulfill requirements regarding the harsh industrial environment. Additionally,
smartphones do not allow for a sufficiently large and detailed visualization of the sensor signals,
which is crucial for providing machine operators with the necessary information for reliable live
annotation (cf. Sections 6.2.2, 6.2.4, and 6.2.5). The physical prototype device was attached to the
outside of the machine and connected to these sensors (cf. Figure 1).
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Figure 1. Surroundings for online annotation: Our developed prototype visualizes sensor signals and
allows for live and in situ annotation of anomalies and process adaptations (reactive to predictions by
anomaly detection algorithms or initiated by the machine’s operator). An exemplary screenshot of the
default screen is illustrated in the lower left corner. Live annotation allows for a less time-consuming
and thus cheaper way of gathering labels than via retrospective annotation by domain experts.

Potential abnormal events are detected by a generic unsupervised anomaly detection model.
The unsupervised anomaly detection model can then raise an alarm (both acoustically and by
activation of a flash light) to trigger feedback of the human machine operator to the proposed anomaly.
The visualization of sensor signals at the prototype comes with a GUI which guides the labeling process
and additionally allows for user-initiated labeling of anomalies and process adaptations. Thus, we aim
to achieve a large-scale data set of several weeks of sensor signals and related in-the-wild labels
annotated by domain experts directly in the setting they were recorded. Training (semi-)supervised
extensions of the unsupervised anomaly detection model by incorporating these live annotations will
be part of future work.

The major challenge of our approach from an algorithmic point of view lies in the choice of an
appropriate generic anomaly detection model. Guided by theoretically formulated constraints given
by the embedded nature of our system, the characteristics of our data, and the behavior of machine
operators, we perform tests on a labeled subset of our data for an initial choice of anomaly detection
model. The best-performing algorithm is then chosen for deployment on our demonstrator system.

From a human–machine interface point of view, estimating reliability both of anomaly
propositions of the chosen anomaly detection model and of human label feedback is challenging
due to the fact that, for most of our data, no ground truth labels exist. Furthermore, we cannot rely on
comparison of labels from multiple annotators as typical crowd labeling methods do because label
feedback is collected from a single annotator (i.e., the current machine operator). We introduce several
assumptions both on label reliability and annotator motivation and validate them relying on the
amount and distribution of label mismatch between anomaly propositions and online label feedback,
labeling behavior of different annotators (inter-annotator agreement) during a second retrospective
signal annotation phase, and temporal evolution of labeling behavior of annotators. Furthermore,
we investigate the influence of certainty of the anomaly detection algorithm of its anomaly propositions
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(measured in height of anomaly scores), the familiarity of machine operators with the labeling user
interface, and other measures regarding user motivation on the reliability of online label feedback.

In summary, the main questions that we aim to address in this study are as follows:

• Can we collect high-quality but low-cost labels for machine tool anomalies from machine
operators’ online label feedback to anomalies proposed by a generic unsupervised anomaly
detection algorithm?

• Can we develop a sensible and understandable human–machine interface for the online labeling
prototype by taking the end users’ (i.e., machine operators’) opinion into account during the
design process?

• Can simple anomaly detection models respecting hardware constraints of our embedded labeling
prototype yield sensible anomaly propositions?

• How does the reliability of label feedback depend on the type of anomaly, the kind of signal
visualization, and the clarity of proposed anomalies (measured in height of anomaly scores)?

• How can we measure reliability of the annotators’ label feedback sensibly without access to
ground truth labels for most of the data and with label feedback from only one annotator at a
time (i.e., the current operator of the machine tool)?

The main contributions of this study are as follows:

• We conduct a study exploring how to incorporate domain expert knowledge for online annotation
of abnormal rare events in industrial scenarios. To the best of our knowledge, no comparable
study exists.

• Other than in the frequent studies on labeling in medical and social applications, we collect labels
not via a smartphone-based human–machine interface but via a self-developed visualization and
labeling prototype tailor-made for harsh industrial environments.

• We share insights from the process of designing the visualization and labeling interface gathered
by exchange with industrial end users (i.e., machine operators).

• We propose measures to judge the quality of anomaly propositions and online label feedback in a
scenario where neither ground truth labels are accessible nor comparison of labels of multiple
annotators is an option. We evaluate these assumptions on a large corpus (123,942 signals) of
real-world industrial data and labels which we collected throughout several weeks.

• Furthermore, we describe which types of anomalies can be labeled reliably with the proposed
visualization and labeling prototype and identify influential factors on annotation reliability.

In the remainder of the paper, we first discuss related work on anomaly detection models
(Section 2.1) and methods for the evaluation of human annotations (Section 2.2). Then, we introduce
several assumptions for the evaluation of quality of the human label feedback provided by the proposed
live and in situ annotation approach (Section 3). These assumptions address the challenges of rating
label feedback quality without being provided ground truth labels or more than one online annotation
per signal. Afterwards, we describe details about the setup for data measurement (Section 4) as well as
the design process and functionality of the proposed labeling prototype (Section 5). Then, we state
results for the experiments conducted in order to select an appropriate anomaly proposing model
(Section 6.1) and in order to rate the quality of labels collected via the proposed live annotation
approach (Section 6.2). The latter evaluation of live annotations is guided by the assumptions
formulated in Section 3. In Section 7, finally, we summarize the results and critically discuss the
strengths and weaknesses of our approach as well as the feasibility to generalize the approach to other
application domains.

2. Related Work

2.1. Anomaly Detection

In Reference [2], Chandola et al. distinguished different types of anomalies regarding their relation
to the rest of the data. In this study, the focus will be on collective anomalies. This type of anomaly
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has been characterized by a collection of signal samples being interpreted as anomalous behavior
and opposed to point anomalies, which manifest in single outlying signal samples. Furthermore,
anomalies considered in this study manifest as contextual anomalies, where the context of signal
samples (e.g., relative position in the signal) is relevant for an outlying segment of data being labeled
anomalous.

For this intersection of collective and contextual anomalies, a large corpus of potential anomaly
detection models can be considered. These models can be distinguished based on the representation of
the data used as input for the model:

• One-dimensional representation: Anomaly detection models rely on the data being given as
one-dimensional vectors. These vectors can be given as either raw signals or a transformation
of the data to another, one-dimensional representation. Popular transformations are envelope
signals [3], wavelet-based representations [4], or other spectral transformations based on singular
value decompositions [5].

• Multidimensional representations: These representations emerge when the sensor data are
projected to a dual space by extraction of features. When aiming for a generic anomaly detection
model, the major challenge is given by the choice of a generic but expressive set of features [6].
Among popular choices are statistical measures and wavelet-based features [7] or filter bank
features (e.g., Mel-frequency cepstral coefficient (MFCC) features) [8]. The latter yield similar
information to anomaly detection approaches based on time-frequency distributions (TFDs).

• TFD representations: Recently, different powerful deep learning approaches capable
of learning the latent representations of the underlying, data-generating process from
two-dimensional data have been introduced (with a focus on two-dimensional representations,
typically images). Among these, deep generative models like variational autoencoders
(VAEs) [9], generative adversial networks (GANs) [10], auto-regressive generative models like
PixelRNN/CNN [11], and non-autoregressive flow-based models [12–14] supersede earlier
autoencoder (AE) approaches [15–17] which come with a compressed latent representation of the
data but without the possibility of generating samples from the latent representation. It is this
ability to sample from the generative process of the data which seems to allow deep generative
models to capture details of the data flexibly without any access to labels.

In this study, we will focus on one-dimensional representations due to the problems involved
with finding a generic feature set for multidimensional feature space approaches.

2.1.1. Methods Based on One-Dimensional Representations

Approaches of direct clustering and classification of one-dimensional time series representations
rely on the computation of pairwise time series distance measures. The most common measures are
Euclidean distance (ED) and dynamic time warping (DTW) distance [18] as well as its extensions
(soft-DTW (SDTW) [19], DTW barycenter averaging (DBA) [20], etc.). While Euclidean distances are
calculated directly based on the samples at corresponding signal locations, DTW-related measures
come with an additional, preceding step for optimal alignment of signals via nonlinear warping of the
time series. This flexibility allows comparison of signals with different lengths or non-uniformly affine
transformed signals.

For classification, k-nearest neighbors (kNN) and especially 1NN have evolved as a common
baseline [19]. Multiple evaluations have shown that 1NN is hard to beat in time series classification,
especially when combined with the DTW measure [21,22]. For large training data sets, it has been
shown that the predictive quality with Euclidean distance assimilates to that of elastic measures such
as DTW [23]. Unfortunately, kNN suffers from high memory costs and long prediction times as all
training examples have to be stored (both O

(
NT

)
for training set size N and signal length T in a naive

implementation). To make a prediction on a new time series, the DTW measure has to be computed
for all these training examples, resulting in high computational demands and long prediction times.
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In Reference [24], nearest centroid (NC) combined with DBA has been shown to be competitive with
kNN at a much smaller computational cost (i.e., prediction time) and reduced memory space demand
across multiple data sets. This has been confirmed in Reference [19] for barycenter averaging with the
Soft-DTW measure. The NC methods rely on each anomaly class being sufficiently representable by a
single centroid.

Time series clustering methods group training time series into a number of (typically prespecified)
clusters. A popular choice in time series analysis is k-means, being the only clustering algorithm
scaling linearly with data set size [6]. Here, DTW-based elastic measures might again be used to find
the barycenter best representing the centroids of k-means clusters [19]. A computationally efficient
alternative is k-medoids, which selects centroids from the set of training data examples, i.e., spares
the step of learning centroids from training data samples [25]. Among more advanced clustering
approaches, hierarchical clustering approaches like DBSCAN [26] and its variants OPTICS [27] or
HDBSCAN [28] are popular choices. They come without (parametric) constraints on cluster forms
but find clusters in dense regions of data points. Complementary, subspace clustering techniques
like SSC [29] or FSC [30] have superseded traditional clustering techniques by finding a descriptive
subspace of the time series data parallel to clustering and are thus more immune to the curse of
dimensionality inherent to all time series methods. For a more extensive overview of time series
clustering approaches, we refer to the surveys in References [31,32].

Finally, multiple deep learning techniques have started conquering the field on time series
methods. Typically approaches based on recurrent neural networks (RNNs) have dominated [33,34],
while other approaches based on VAEs [35] or convolutional neural networks (CNNs) [34,36] have
only most recently started to appear.

2.1.2. Multidimensional Representation-Based Methods

Feature space methods yield a powerful way to reduce the information given by raw samples
in sensor signals. As mentioned above, these approaches come with the challenge of identifying
a sensible set of features when we aim for a generic anomaly detection: For a generic anomaly
detection, it is typically infeasible to specify the most relevant features a priori. Thus, a potentially
large set of features has to be computed. As discussed in Reference [37], high-dimensional feature
spaces result in increasing distances between all data points, which makes common approaches of
finding anomalies by large distances to normal data points or in regions with a small density of
data points increasingly less appropriate. This is known as the curse of dimensionality and has been
described first in Reference [38] for applications of high dimensional outlier detection. Thus, feature
space approaches in anomaly detection have to come with an implicit or explicit feature selection
(e.g., decision tree-based approaches) or dimensionality reduction (e.g., subspace methods) or have to
be robust to irrelevant features and the high dimensionality of the feature space (e.g., robust covariance
estimators [39]). The challenge of defining the most relevant features a priori for feature space-based
methods might alternatively be circumvented by relying on feature learning techniques. Apart from
sparse dictionary techniques like nonnegative matrix factorization (NMF), neural network-based
methods have dominated the field of feature learning. Despite their dominance in image classification,
their application in (time series) anomaly detection fields is rather seldom.

Purely unsupervised, multidimensional anomaly detection approaches model anomalies as
outlying points from dense regions of data points [40]. Dense normal regions have been identified
either by model-based approaches like one-class classifiers [41–43] and probabilistic models [39]
or proximity-based approaches. The latter group of algorithms can be further distinguished
into distance-based methods (often kNN-based approaches like ODIN [44]) and density-based
approaches like LOF [45] and its extensions [46–48]. Other popular proximity-based approaches
are INFLO [49], LoOP [50], LDOF [51], LDF [52], and KDEOS [53]. More advanced, hierarchical
density-based approaches have been introduced by DBSCAN [26] and its extensions like OPTICS [27]
or HDBSCAN [28].
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Many of the former methods have relied on data being given as complete batch, i.e., data
have been considered in an offline classification scenario. Recently, the streaming data scenario
(i.e., online classification) has received more attention triggered by the position papers of Aggarwal [54]
and Zimek [55]. Dominant techniques have relied on ensemble methods based on the early success
of isolation forests [56] and the theoretical analysis of anomaly ensembles in Reference [57]. Recent
work on outlier ensembles in streaming data scenarios has been listed in Reference [58] and given by
the subsampling techniques in Reference [59], ensembles of randomized space trees [60] or half-space
trees [61], selective [62] and sequential [63] anomaly ensembles, histogram-based ensembles like
LODA [64], and subspace hashing ensembles like RS-Hash [65] or xStream [58].

2.1.3. Two-Dimensional Representation-Based Methods

In general, two-dimensional representations like TFDs open up perspectives for making use of
the numerous methods applied in image processing, among which deep learning approaches have
dominated in recent years (cf. Section 2.1). In a follow-up study, we will focus on finding more
elaborate and (semi-)supervised anomaly detection methods, including deep learning approaches
from the image processing domain. In this study, we will focus on finding and describing ways to
collect live annotations via simple anomaly detection models. This will allow us to provide large
labeled data sets necessary for these methods considered in the follow-up study.

2.2. Label Evaluation

Classical measures for comparison of two sets of labels are given by precision, recall, and F1 scores.
Additionally, the most prominent measures for outlier detection are given by the area under curve
(AUC) score for the receiver operating characteristic (ROC) curve and the precision@k measure [66].

All of these measures rely on being given ground truth labels for estimating predictive quality.
Despite small subsets of the sensor data labeled by domain experts, we do not have access to such
ground truth labels. Additionally, both online annotation of data directly during recording at the
machine via the labeling prototype and retrospective annotation to a later point of time (i.e., by being
shown only the signals but not having the direct context of when these signals were recorded) can
introduce uncertainty into the process of human labeling. Thus, it is a priori not trivial to decide which
labels should be considered more reliable: labels proposed by the anomaly detection algorithm,
online label feedback by the human annotator, or label feedback during a second retrospective
labeling period.

2.2.1. Label Comparison without Knowing a Ground Truth

A vast amount of literature on estimating or improving reliability of human annotations exists.
Among the most typical application fields are medical applications like smoking detection [67],
sleep detection [68], or affect recognition [69] and the large field of activity recognition [70,71].
While earlier work has focused on collecting labels from diaries filled out by study participants,
smartphone apps have taken over the field of human annotation [72–75]. The main advantage of
collecting labels via smart phones is timely labeling triggered by events (e.g., from sensor data) paired
with visualization of context data in order to give the user a sensible amount of information during
annotation. We built on these strengths by a similar approach relying on our visualization and
labeling prototype.

Much of the work on collecting human annotations has focused on active learning scenarios,
which prompt the user for annotation only for the data being considered most valuable [37].
High value can be defined, among other strategies, by high uncertainty of the predictive model
regarding classification of the given data (which is referred to as uncertainty sampling [76]) or by
the scarcity of assumed labels (i.e., rare labels are more valuable). The latter strategy is related to
our scenario of detecting rare, abnormal events, where the idea is to get annotator’s feedback for the
seldom abnormal events proposed by the anomaly detection model.
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As human annotations are known to be noisy, many of the above approaches try to estimate
reliability of the label feedback. When no ground truth labels are present, the most typical strategy has
been to rate reliability by inter-annotator agreement. Despite several proposed statistical measures [77],
approaches have leveraged label proportions [78], Bayesian nonparametric estimators [79], or adversial
models [80] for estimating label reliability from inter-annotator agreement. Several approaches like
those proposed in Reference [81–83] have explicitly estimated user-specific reliability models or have
tried to improve the annotation quality by imposing additional assumptions on the characteristics of
labels (e.g., correlations between adjacent labels [67,68]).

Due to the lack of a reliable ground truth and the fact that we have access to only one human
annotator per online annotated sensor signal, we have to specify alternative assumptions for measuring
the quality of human online annotations (cf. Section 3).

2.2.2. Online Annotation by Human Users

Online annotation of sensor signals in industrial manufacturing surroundings has so far not been
considered in the research community to best of our knowledge. For discussion of state-of-the-art
online annotation methods in this section, we thus consider other application fields.

In Reference [84], the authors have proposed a procedure for the synchronization of wearable
accelerometers and video cameras for automatic ground truth annotation of acceleration sensor signals.
This has allowed them to estimate time delays between these two sensor modalities with a minimal
level of user interaction and to thus improve the annotation of acceleration sensor signals via video
footage consideration.

The basic idea of annotating hard-to-interpret raw (acceleration) sensor signals by considering
human-interpretable meta information (video footage) is similar to our idea of online label feedback in
that we assume using direct, human-interpretable context/meta information (e.g., being able to view
and hear the processing of workpieces) while being given sensor signals for review might be crucial
for good annotation results.

The authors of Reference [85] have proposed an online active learning framework to collect
user-provided annotations, as opposed to the typical retrospective analysis of video footage used
in human activity recognition (HAR). The user has only been prompted highly critical annotations,
which is similar to our approach of prompting only anomalous signals for online annotator feedback.

In concordance with their results, they have claimed that users of activity recognition systems
themselves are (often neglected) sources of ground truth labels. This makes sense for the field of
activity recognition, where users have a good knowledge of their own activities. For our application,
it is less clear in advance if human annotators (i.e., machine operators) have a good knowledge of
the current machine behavior such that they are reliable annotation sources and their labels can be
considered as ground truth. Furthermore, we assume reliability of annotator feedback to be highly
dependent on the anomaly class: Anomalies resulting in clear signal deviations with a well-known,
characteristic pattern are assumed to be labeled more reliably.

In Reference [86], Schroeder et al. performed an analysis of existing live annotation systems and
then suggested an online annotation system based on their findings about basic requirements for
annotation systems. This online annotation system can be generated automatically based on a database
schema. Additionally, their setup has allowed for the inclusion of annotation constraints, which can be
used for causal correction of given annotations.

Although their study has focused more on the setup of an online annotation system than
evaluation of actual online annotation results, their findings might be used for our annotation task in
order to create a more tailor-made annotation user interface.

In Reference [87], Miu et al. assumed the existence of a fixed, limited budget of annotations a user
is willing to provide and discussed different strategies for best spending this budget. This is related to
our assumptions (cf. Section 3) that the quality of human annotations will rely both on the quality of



Informatics 2019, 6, 38 9 of 36

anomaly propositions by the anomaly detection model (e.g., small false positive (FP) rate) and (visual)
clarity of anomalies prompted to the user for annotation (e.g., height of anomaly scores).

In Reference [88], the authors proposed a technique for online activity discovery based on
clustering assumptions of labels in successive signal windows. Although their approach is memory
efficient and has constant time complexity, it is not applicable in our scenario due to the fact that
reoccurring activities have lead each time to a newly created cluster segment with the methods
introduced in Reference [88]. This does not allow to model normal behavior as a single class in
reoccurring cluster segments and to distinguish it from other, abnormal signal classes. This is
crucial for our approach relying on prompting only outliers from this single normal signal class
for user annotation. Still, their approach is complementary to anomaly detection models and could in
combination with them lead to better choices of prompted signals, for example, when abnormality of
signals can be defined respective to other signals in their neighborhood (i.e., cluster segments).

In Reference [84–86], the authors have shown that online annotation by user feedback can yield
comparable or better results to retrospective annotation (e.g., via video footage), even when a fixed
budget of annotations is considered [87]. This makes sense for the typically considered task of human
activity recognition, where the user is an expert for his own activities. For our task of detection of
different types of machine health anomalies, it is a priori less clear if and for which anomaly classes
the human annotators (i.e., machine operators) can be considered experts yielding a reliable ground
truth labeling.

3. Assumptions

In this section, we will discuss the assumptions on evaluation of online label feedback which were
introduced with our work.

3.1. Assumptions on Measures for Quality of Human Label Feedback

As mentioned in Section 2.2.1, we are confronted with the challenge of rating label reliability
without access to ground truth labels. Additionally, we receive only one label feedback per proposed
signal (assigned by the single current machine operator), which makes rating reliability of online
label feedback via inter-annotator agreement impossible. We thus impose alternative strategies and
assumptions for rating reliability of online label feedback:

• Assumption 1: We assume reliable online annotations coincide with a low mismatch between
anomaly propositions of the anomaly detection model and online annotator feedback (i.e., a high
confirmation rate). The amount of confirmed anomalies per class yields information about which
types of anomalies can be well identified by the human annotators: We assume frequently labeled
anomaly types to be the ones which are identifiable well from the sensor signals visualized
with our labeling prototype, as a characteristic signal pattern seems to be observable for the
machine operators.

• Furthermore, we assume the confirmation rate of online label feedback to be dependent on
anomaly scores and time of proposing signals for annotation.

– Often, anomaly detection models are capable of stating a degree of abnormality of a signal
under review compared to the learned normal state. For example, time series models
compute distance measures between signals under review and the normal training data
(kNN models) or a compressed template of these normal data (NC models) during prediction.
These distance measures can be interpreted as anomaly scores. We assume reliable label
feedback to coincide with high anomaly scores assigned by the unsupervised anomaly
proposing anomaly detection model (Assumption 2a): High anomaly scores are assigned to
signals under review clearly deviating from normal behavior. Such clearly deviating signals
are more easily identifiable as anomalies and thus assumed to be labeled more reliably.
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– Assumption 2b: Additionally, we assume a higher degree of confirmative label feedback for
days where visually confirmed anomalies (i.e., due to machine inspection by the operators)
are observed. On the other hand, if anomaly propositions for clearly outlying signals
are rejected although anomalous machine behavior was confirmed by machine inspection,
we assume small reliability of this label feedback.

• For a high mismatch between anomaly proposition and online label feedback, it is hard to
decide whether proposition or feedback is more trustworthy. In order to still be able to assess
reliability of online label feedback, we introduce a second period of retrospective signal annotation:
Signals proposed as anomalous to the machine operators during online annotation are stored for
a second review. Multiple annotators are then asked to inspect these signals again retrospectively.
Comparison of online label feedback with this second set of retrospective labels allows us to rate
the following:

– Inter-annotator agreement (i.e., consistency between retrospective labels of multiple
annotators). We assume reliable retrospective labels to coincide with a high inter-annotator
agreement (Assumption 3a).

– Intra-annotator agreement (i.e., consistency of annotations between first (online) and second
(retrospective) labeling period). In order to make the single online label feedback comparable
with multiple retrospective labels, we compute the mode (i.e., majority vote) of the multiple
retrospective labels per proposed signal. We assume reliable online label feedback to coincide
with a high intra-annotator agreement between online label feedback and these modes
(Assumption 3b). A subject-specific annotator agreement cannot be computed, as we do not
have access to shift plans (due to local data protection laws).

• For a better understanding, different scenarios of inter- and intra-annotator agreement are
visualized in Figure 2. Here, retrospective annotators 1 to 5 are shown the signals proposed
as anomalous during online annotation (bottom row) for a second review. We can judge
inter-annotator agreement from these 5 annotations per proposed signal. The majority vote
found from these 5 annotations per signal is depicted in row 6 and allows for comparison of
retrospective annotations to the online annotations in row 7. This in turn allows for specifying
an intra-annotator agreement, i.e., consistency between both labeling periods for each signal
proposed as anomalous.

• Finally, we relate high label reliability to high annotator motivation. Annotator motivation, on the
other hand, is estimated by the assumptions stated in the next section.
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Figure 2. Explanation of measures for inter-annotator agreement and intra-annotator agreement.

3.2. Assumptions on Measures for Annotator Motivation

We assume high annotator motivation for the following:
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• A high reaction rate during online annotation to labels proposed by the anomaly detection
algorithm. This is measured by the ratio of anomaly propositions that the annotator reacted to by
either confirming an anomaly or rejecting the proposed label (i.e., by assigning a “Normal” label).
Furthermore, an intentional skipping of the current anomaly proposition by pressing the “Don’t
know/Skip” button (for specification of uncertainty) on our labeling prototype (cf. Figure 4) is
rated as a reaction (Assumption 4a).

• A small reaction latency during online annotation to labels proposed by the anomaly detection
algorithm (Assumption 4b).

• A high degree of user-initiated actions for days with visually confirmed anomalies, as we assume
a higher necessity of process adaptations after confirmed anomalies and higher necessity of
reporting anomalies missed by the anomaly detection model at clusters of abnormal machine
behavior (Assumption 5). This degree can be measured by the number of clicks of any of the
buttons for user-initiated actions on our visualization and labeling prototype (cf. Figure 4a and
buttons “Report anomaly”, “Report process adaptation”, and “Start learning”).

4. Measurement Setup

In this section, we give information about the measurement setup. This includes both a brief
introduction to basic steps of (centerless external cylindrical) grinding and specifications about the
used sensors and sensor positions. All data were collected from the centerless external cylindrical
grinding machine illustrated in Figure 1 which was equipped with our labeling prototype.

4.1. Centerless External Cylindrical Grinding

The general arrangement of the most important centerless external cylindrical (CEC) grinding
machine parts is depicted in Figure 3a. The workpiece is situated between the grinding wheel and
control wheel on the workpiece support. The grinding wheel approaches the workpiece and starts
the machining of the workpiece. Workpiece support and control wheel decelerate the workpiece.
This difference in velocity of the grinding wheel and control wheel applies a force to the workpiece
which induces material removal.

Grinding wheel

Control wheel

Workpiece support

Workpiece

(a) Process of external cylindrical grinding.

Visualization 
and labeling 

tool

(b) Positions of mounted sensors.

Figure 3. Left: Basic parts of a centerless external grinding machine. Right: Positions of mounted
sensors at the grinding machine in our study. Three separate grinding/control wheel pairs allow for
efficient machining of complex workpieces with successive processing steps.

4.2. Sensor Specifications

This study’s data were recorded using MEMS vibration sensors. The vibration sensors
have a single degree of freedom and sample at a rate of 62.5 kHz. For the measurement of
process-related anomalies, the workpiece support proved to be a suitable sensor mounting position
(cf. Figure 3a). The grinding machine in this study was rather complex and encompassed three
workpiece supports. These allowed for three subsequent processing steps and thus machining of
geometrically complex workpieces.
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An overview of the measurement setup for the specific CEC grinding machine used for data
collection in this study is illustrated in Figure 3b. The grinding process at this machine involves
three workpiece supports. These are depicted in white, with workpieces depicted in gray. Grinding
wheels and control wheels associated to the three successive processing steps are shown in red and
blue, respectively. The successive processing of the workpieces starts on the bottom workpiece
support, proceeds to the middle workpiece support, and is finished on the top workpiece support.
This processing order of the workpieces is indicated by the direction of the arrows. Each workpiece
support is equipped with a sensor (green). The bottom sensor was named OP1, the middle sensor
was named OP2, and the top sensor was named OP3. The most relevant sensor positions for
anomaly detection are OP1 and OP2, where most of the material removal from the workpiece happens.
Each sensor is connected to an embedded PC (gray) acting as gateway system for local preprocessing
and data handling. The gateway systems are in turn connected to our labeling prototype.

5. Description of the Visualization and Labeling Prototype

In order to understand the design considerations of our labeling prototype, we will describe
the characteristics of the labeling surrounding and how we addressed these during the design of the
visualization and labeling prototype in this section. Furthermore, we sketch the intended use of the
labeling prototype.

5.1. Design Process of The Labeling Prototype

Design considerations of the labeling tool were deducted from the typical working conditions
on the factory floor. The grinding machine used for data collection in this study is situated between
multiple other machine tools on a real-world factory floor. The characteristics of the industrial
surrounding and the design considerations with which we want to address these characteristics can be
summarized as follows:

• First, general impressions of the surrounding included its loudness and the necessity of the
machine operator to be capable of handling multiple tasks in parallel.

• In order to draw the attention of the machine operator to the labeling prototype display while
being involved with other tasks, we triggered an alarm flash light and red coloring of proposed
abnormal signals. Furthermore, an acoustic alarm signal was activated. This alarm signal had to
be rather loud due to the noisy surrounding of the machine.

• To address the expected uncertainty in the operators’ annotation process which occurred due
to handling multiple tasks in parallel, we included an opportunity to skip the labeling when
uncertain (buttons “Don’t know/skip” on screens in Figure 4). Additionally, we allowed switching
between the successive labeling screens manually to review the visualized signals again during
the labeling process (buttons “Back to last screen” on screens in Figure 4). Finally, void class
buttons (“Other anomaly” and “Other process adaptation”) allowed expressing uncertainty about
the class of anomaly/process adaptation or giving a label for an anomaly/process adaptation
which was not listed among the label choices.

Additionally, the end users of our labeling prototype were included at multiple stages of the design
process in order to allow for a design of the labeling prototype guided by optimal user experience.
The end users are the machine operators of the grinding machine in this measurement and the machine
adjusters. The team of machine operators is working in shifts such that the grinding machine is
operated by a single machine operator at a time. The team is led by two machine adjusters that plan
larger process adaptations in detailed discussion with the machine operators. Thus, both machine
operators and adjusters have in-detail knowledge about the production process at this machine and
can be considered domain experts. They were involved in the design process in the following manner:

• In order to define an initial version of the labeling prototype screen design, we had a first meeting
with the machine adjuster. In this meeting, we proposed and adapted a first version of the labeling
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prototype design. Additionally, we discussed the most accustomed way for presentation of sensor
data: Industrially established solutions typically depict the envelope signals rather than the raw
sensor data, TFD representations or feature scores. We thus chose the similar, well-known form
of signal representation. Finally, we discussed the most frequent anomaly types and process
adaptations to be included as dedicated class label buttons (screens 3 and 4 in Figure 4).

• After implementation of the labeling GUI from the adapted design of the initial meeting,
we discussed the user experience of the proposed labeling GUI in a second meeting with the
machine adjuster. This involved a live demo of the suggested labeling GUI in order to illustrate the
intended use of the labeling prototype and resulted in a second rework of the labeling prototype.

• After this second rework of the labeling prototype, a meeting was arranged including both the
machine adjusters and all machine operators. This meeting included a live demo of the labeling
prototype directly at the grinding machine targeted in this study and a discussion of the terms
chosen for the labeling buttons on screen 3 and 4 depicted in Figure 4. Additionally, an open
interview gave the opportunity to discuss other ideas or concerns regarding the design or use of
the labeling prototype.

• In order to address remaining uncertainties about the intended use of the labeling prototype after
deployment on the demonstrator, we have written a short instruction manual which was attached
next to the labeling prototype at the machine.

(a) Default screen: Continuous visualization (b) Screen 2: Anomaly labeling (binary)

(c) Screen 3: Anomaly labeling (multi-class) (d) Screen 4: Process adaptation labeling (multi-class)

Figure 4. Screens of the visualization and labeling prototype (English version): The figures illustrate
screenshots of the developed labeling prototype which was deployed on the factory floor. A detailed
description of the functional workflow of the screens can be found in Section 5.2.



Informatics 2019, 6, 38 14 of 36

The final visualization and labeling prototype is shown in Figure 4. Background colors of the
screens were changed to white (black on the original screens, cf. Figure 1) for better perceptibility of
visual details. The terms stated on the screens were translated verbatim to English in these figures
for convenience of the reader. Apart from the translated terms and the change in colors, the screens
depicted in Figure 4 are identical to the original screens. The GUI with original background colors,
language descriptions, and institution logos can be found in the appendix (Figure A1).

To the best of our knowledge, no previous work has focused on collecting signal annotations via
direct human feedback in industrial applications like described here. Furthermore, the human–machine
interface we use is different from typical off-the-shelf devices and involves different design implications,
which are described here for the first time.

5.2. Functionality of the Labeling Prototype

In this section, we want to give a brief overview of the intended use of the labeling prototype.
The default screen as depicted in Figure 4a illustrates the sensor signals. As mentioned in the former
section, rather than raw signal samples, we chose to depict envelope signals as the signal representation
which is most accustomed to machine operators.

When the anomaly detection algorithm detects an anomalous signal behavior, an alarm is
generated: The signal is colored in red; furthermore, both an acoustic alarm and a flash light are
activated and the anomaly counter to the right of the alarm-causing signal is incremented. By pressing
this counter button, the user is guided to the second screen (cf. Figure 4b). On this second screen,
the user can review the alarm-causing signal and the signals of the other sensors by switching between
the tab buttons “OP1”, “OP2”, and “OP3”. If the signal is considered normal, the user can return to
screen 1 by pressing the button “Normal”. If the signal is considered abnormal, the user should press
the button “Not normal” and will be guided to screen 3 (cf. Figure 4c) to specify the type of anomaly.

On screen 3 then, the user is prompted a choice of the most typical anomaly types. A button
“Other anomaly” allows to specify that either the anomaly type is not listed or that only vague
knowledge exists that the signal is anomalous but that the type of anomaly is unknown. This button
might, for example, be pressed in case of a common form of envelope signal that is known by the
operator to typically appear before certain machine anomalies or by clear signal deviations with an
unfamiliar signal pattern. By pressing the button “Back to last screen” the user can return to screen
2 for reconsidering the potentially abnormal signal under review. By pressing the button “Process
adaptation”, the user is guided to screen 4 (cf. Figure 4d), where the signal under review can be labeled
as showing a process adaptation. The reason for this is that a generic, unsupervised anomaly detection
model can typically not distinguish between signal outliers due to a real anomaly or major process
adaptations and might report both as a potential anomaly. On screen 4, the user is again prompted with
a selection of most typical process adaptations and the possibility to specify “Other process adaptation”
if the type of process adaptation is not listed.

On each screen, the user has the possibility to abort the labeling process by pressing the “Don’t
know/skip” button. This allows them to return to the default screen (screen 1) when uncertain about
the current annotation. We assume higher-quality labels because these buttons allow for the expression
of annotator uncertainty.

On screen 1, the user is given three more buttons for self-initiated activities. “Report anomaly”
allows the user to specify an abnormal signal not reported by the anomaly detection models. These false
negatives are the most precious anomalies, as they are the ones that could not be detected by the
anomaly detection algorithms. The button “Report process adaptation” allows reporting process
adaptations, which both gives useful meta-information for later signal review by the data analyst
and allows learning distinguishing between signal outliers due to (normal) process adaptations and
anomalies. The button “Start learning” finally allows initiating a relearning of the anomaly detection
model. This button should be considered after major process adaptations or when the learning process
was initiated during abnormal signal behavior, as then the learned normal machine behavior is not
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represented well and will consequently result in frequent false positives. The state of learning is
depicted by a counter in the upper left corner of screen 1, which allows the user to consider relearning
(i.e., if abnormal events occurred during learning) and, in general, makes the state of learning apparent
to the user.

6. Experiments

This section presents experiments conducted both for the initial choice of an anomaly detection
model and for evaluations regarding the assumptions imposed on label quality and annotator
motivation in Section 3.1.

6.1. Selection of a Generic Unsupervised Anomaly Detection Algorithm

A sensible choice of anomaly proposing algorithm (i.e., anomaly detection model) had to be
found among the rich potential choice of models introduced in Section 2.1 for deployment on
the labeling prototype. The unsupervised anomaly detection model of choice should both fulfill
requirements regarding predictive quality and address the computational constraints (restricted
memory space and real-time predictions) arising from the embedded nature of our custom-built,
deployed labeling prototype.

6.1.1. Evaluation Data

For selection of a suitable anomaly detection algorithm, the challenge is how to measure predictive
quality of models without reliable ground truth labels for the data. In fact, the very motivation of
installing the visualization and labeling prototype at the grinding machine observed in this study was
that critical process problems occur at this machine but the cause of them remains widely unknown.

The data sets chosen for estimation of predictive quality of anomaly detection candidates (data
sets DS1 and DS2) were recorded at two successive days with visually confirmed machine damages:
Multiple successive workpieces were processed with a nonoptimal interaction between the grinding
and control wheels (“whirr”), which resulted in damage of the grinding wheel. Whirring of workpieces
is typically caused by the workpiece not being decelerated properly by the control wheel. A whirring
workpiece is then accelerated to the speed of the grinding wheel and ejected from the workpiece
support, flying through the machine housing—thus the term whirr.

These data were recorded during initial test measurements at the same grinding machine used in
this study prior to the online annotation experiments involved with this study. The visual confirmation
of machine damages allowed for a labeling of whirr anomalies and grinding wheel damages
in discussion with the domain experts and can thus be interpreted as ground truth labels.
DS1 (3301 data records, 293 anomalies) includes a higher proportion of anomalies than DS2
(3692 data records, 22 anomalies). Thus, predictive results for DS1 were assumed more informative
regarding the choice of an appropriate anomaly detection algorithm.

Exemplary signal envelopes for the different classes present in data sets DS1 and DS2 are
illustrated in Figure 5. An exemplary normal signal of sensor OP1 is depicted in Figure 5a.
The most severe class of anomaly at the considered grinding machine was whirring of workpieces;
an exemplary signal is depicted in Figure 5c. As mentioned above, whirring workpieces can result in
severe damage of machine parts, especially of the grinding wheel and the control wheel. An exemplary
signal of a visually confirmed damage in the grinding wheel due to multiple successive whirring
workpieces is illustrated in Figure 5d. Warm-up signals as depicted in Figure 5b can be observed
typically after machine parts change due to detected anomalies and when the machine is started after
a longer downtime. Warm-up is the most frequent type of process adaptation in our data. In order
to create a binary classification scenario, labels for all anomaly classes were merged into a single
anomalous label class.
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(a) Normal (sensor OP1), DS2
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(b) Warm-up (sensor OP1), DS2
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(c) Whirr (sensor OP1), DS1
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(d) Damage of grinding wheel (sensor OP1), DS1

Figure 5. Exemplary envelope signals for different classes of anomalies, as seen during our deployment
and annotated by expert operators: Damage of the grinding wheel occurred due to multiple, successive
whirring workpieces. A detailed description of the different anomaly types can be found in Section 6.1.1.

6.1.2. Anomaly Detection Models and Features

Additional to comparisons of predictive quality of anomaly detection model candidates on labeled
data sets DS1 and DS2, the following requirements for the choice of an anomaly detection algorithm
can be formulated due to the constraints imposed by data structure and embedded nature of our
deployed labeling prototype:

• The algorithm is not provided with any labels during our live annotation experiments and should
thus allow for completely unsupervised learning. Incorporating label feedback for an improved
anomaly detection will be part of a follow-up study.

• Due to the embedded nature, the algorithms should allow for fast predictions (due to real-time
constraints) and have low memory occupation (embedded system with restricted memory space).

• Frequent process adaptations necessitate either fast relearning or fast transfer learning
capabilities of the models in order to retain an appropriate representation of the normal state.

In Tables 1 and 2, the results for comparison of different anomaly detection models on data sets
DS1 and DS2 both regarding predictive quality (precision, recall, and F1 scores) and predictive cost
(training time, prediction time, and memory occupation) are stated. The predictive measures are stated
as class-weighted scores, i.e., class imbalance is taken into account. Memory occupation is stated in
kilo bytes, training time is in seconds, and prediction time is in milliseconds. All experiments were
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evaluated on an Intel Core i7-6700 with 3.4 GHz without any optimization of code or parallelization.
The upper part of the tables are occupied by methods relying on one-dimensional data representations
(i.e., signal envelopes), and the lower parts are occupied by methods relying on multidimensional (i.e.,
feature space) representations. For feature space methods, we made use of the implementations of
scikit-learn [89] and PyOD [90] where available. PyOD and scikit-learn implementations are publicly
available via the URL addresses stated in the related references of the bibliography.

Table 1. Comparison of anomaly detection models on data set DS1 (binary labels).

Algorithm F1 Score Precision Recall Memory [kB] Training Time [s] Prediction Time [ms]

1NN (ED) sup. 99.85 99.85 99.85 8742 0.09 1.29
NC (ED) 99.75 99.75 99.75 23 0.05 0.05
NC (ED+TI) 99.80 99.80 99.80 23 0.78 0.47
NC (DTW) 99.20 99.22 99.19 21 1641.55 861.28
NC (SDTW) 99.30 99.30 99.30 21 205.99 1016.63

LOF [45] 52.32 88.45 47.25 170 0.05 0.03
CBLOF [48] 53.55 88.50 48.36 12 0.94 0.01
IF [56] 55.84 88.61 50.48 78 0.14 0.03
kNN 53.11 88.48 47.96 150 0.06 0.09
MCD [39] 67.45 89.37 62.24 19 0.61 0.01
OCSVM [41] 51.59 88.42 46.60 109 0.06 0.02
HDBSCAN [28] 96.26 96.61 96.47 599 0.20 0.01
LODA [64] 90.06 93.62 88.94 29 0.02 0.01
HSTrees [61] 96.43 96.75 96.62 278 6.31 5.12
RSForest [60] 96.15 96.31 96.31 304 4.82 5.10
RSHash [65] 95.92 96.12 96.11 1807 2.17 0.01
xStream [58] 96.25 96.45 96.42 246,994 13.00 8.04

Table 2. Comparison of anomaly detection models on data set DS2 (binary labels).

Algorithm F1 Score Precision Recall Memory [kB] Training Time [s] Prediction Time [ms]

1NN (ED) sup. 100.0 100.0 100.0 9675 0.06 1.44
NC (ED) 100.0 100.0 100.0 23 0.05 0.06
NC (ED+TI) 100.0 100.0 100.0 23 1.11 0.62
NC (DTW) 100.0 100.0 100.0 23 1676.78 785.73
NC (SDTW) 100.0 100.0 100.0 23 174.61 911.29

LOF [45] 99.41 99.60 99.32 190 0.05 0.04
CBLOF [48] 100.0 100.0 100.0 12 0.03 0.01
IF [56] 99.79 99.82 99.77 79 0.17 0.04
kNN 99.48 99.63 99.41 167 0.05 0.11
MCD [39] 99.75 99.79 99.73 20 0.66 0.01
OCSVM [41] 99.30 99.55 99.19 101 0.06 0.02
HDBSCAN [28] 99.98 100.0 99.01 669 0.35 0.01
LODA [64] 99.83 99.85 99.82 29 0.03 0.01
HSTrees [61] 99.65 99.68 99.68 278 6.75 5.08
RSForest [60] 99.71 99.73 99.73 304 4.95 5.14
RSHash [65] 100.0 100.0 100.0 2019 2.52 0.01
xStream [58] 99.81 99.82 99.82 224,335 15.17 9.35

Most anomaly detection algorithms stated here rely on an assumption of the outlier fraction.
We provided the real outlier fraction, which we computed from DS1 and DS2 ground truth labels.
For Half Space Trees (HSTrees), we used 100 estimators with a maximum depth of 10. For xStream,
we used 50 half-space chains with a depth of 15 and 100 hash-functions. All other parameters were
chosen as the default values provided with the scikit-learn and PyOD implementations. For SDTW,
we chose γ = 1.0 as proposed in Reference [19] due to their observation that DTW (which can be
recovered by setting γ = 0) or soft-DTW with low γ values can get stuck in nonoptimal local minima.

The NC methods come with the necessity to specify a decision threshold between normal and
abnormal behavior. We specified this value based on the Euclidean distances of envelope signals
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observed during training: First, a normal centroid was computed from training examples by Euclidean
averaging of training envelope signals [19]. The anomaly detection threshold was then chosen as the
mean plus nstd = 10 times the standard deviations of Euclidean distances of these training examples
to the normal centroid. During prediction, we computed Euclidean distances to the trained normal
centroid and compared them to this threshold value in order to predict whether the current test
envelope signal is normal or abnormal. As of now, these Euclidean distances of test envelope signals
to the trained normal centroid will be referred to as “anomaly scores”. The normal centroid is kept up
to date to the latest normal data by weighted averaging with the incoming envelope signals classified
as normal. Optionally, envelope signals can be aligned via cross correlation before computation of the
ED measure. Signal alignment yields translation invariance of envelope signals.

As mentioned in the related work section, multidimensional anomaly detection methods introduce
the additional challenge to find a generic, expressive set of features. We chose a set of features
consisting of a combination of statistical features and wavelet-based features, as these are both generic
and prominent in many machine health monitoring applications [7]. Statistical time domain features
were composed of the first four central moments (mean, standard deviation, skewness, and kurtosis).
Wavelet-based frequency domain features were computed by a simple discrete wavelet transform for
a db4 wavelet family base and a decomposition level of 8. This resulted in a 13-dimensional feature
vector per signal.

6.1.3. Results

The results in Tables 1 and 2 illustrate—in accordance with literature on time series
classification (TSC)—that supervised 1NN and unsupervised anomaly detection methods based
on one-dimensional signal representations in general (i.e., NC methods in this study) were
highly expressive. Here, 1NN was included as only supervised anomaly detection model in order
to establish an upper bound on predictive performance when algorithms are provided with complete
label information; all other methods in this comparison of anomaly detection models are unsupervised.
Comparison to 1NN allows then to judge how well unsupervised methods can identify the underlying
normal state of the data in relation to supervised methods.

NC methods illustrated excellent predictive performance for both data sets DS1 and DS2. In our
case, the ED measure was competitive to DTW and SDTW while resulting in faster training/prediction
as stated in Tables 1 and 2. NC models combined with ED measures (NC (ED)) performed especially
well when signals were aligned to the normal centroid via cross correlation before computation of
the ED measure (NC (ED+TI)). The reason for this is the nature of our data: Applying the same
processing steps to each workpiece results in a highly similar envelope signal for each (normally)
processed workpiece and thus is in no need to warp signals before computation of distance measures
as done via DTW. Signal alignment via cross correlation, however, yields a computationally efficient
translation invariance of signals, which takes typical process adaptations (like changing the point in
time of initial contact between the grinding wheel and workpiece) into account. This in turn results in
these signals during process adaptations not being falsely proposed as anomalies, thus reducing the
false positive rate.

For 1NN and NC anomaly detectors, we used envelope signals as signal representation as
outlined in Section 6.1.2. The high-quality predictive results confirm that envelope signals expose
enough information for detection of the present anomaly types. The latter is in accordance with
the observation of experienced machine operators’ behavior that can estimate nonoptimal machine
behavior for many anomaly classes from the typical envelope signals displayed for commercially
available industrial sensors.

While anomaly detection methods based on envelope signals performed well on both data sets,
basic feature space methods failed to capture normal behavior especially for DS1. The reason for
this is assumed to be given by the more complex anomalies present in DS1 than in DS2. Among
feature space methods, only more advanced methods like HDBSCAN and streaming feature ensemble
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methods (LODA, HSTrees, RSForest, RSHash, and xStream) illustrated a reasonable predictive quality.
Nonetheless, these methods yielded worse predictive quality while occupying more memory and/or
revealing longer prediction times than NC methods.

In summary, we found time series distance methods (1NN, nearest centroid) to be best suited for
our data. Additionally, they come with a minimal configuration effort unlike feature space methods
that necessitate a selection of the most appropriate features. However, there is no guarantee that
these models’ good performance observed with our data will generalize to other application domains
or data characteristics. Thus, we argue that the named time series distance models are closest to
minimal configuration models but that finding an optimal model still involves adjusting certain model
parameters or feature choices. The generalizability of the live annotation approach thus depends highly
on the ease of choosing an appropriate anomaly detection model, which might limit the applicability
of live annotation for application domains where time series distance models do not prove appropriate
and a generic set of suitable features cannot be identified.

6.1.4. Choice of Unsupervised Anomaly Detection Model for Deployment

In accordance with the requirements for an anomaly detection algorithm formulated at the
beginning of Section 6.1.2, we thus chose to deploy NC combined with the ED measure and signal
alignment (NC (ED+TI)) due to its excellent performance on data sets DS1 and DS2, the small and
constant memory requirements, as well as fast (re-)training and prediction times. Furthermore,
this model states an intuitive, sequence-level anomaly score as described above, which we will make
use of in the following section on label evaluation results.

In order to allow for quick reaction in case of whirring workpieces, we additionally deployed
a simple threshold heuristic which yielded an alarm signal when a prespecified signal amplitude
threshold was exceeded. This allowed generating timely warnings not only on the level of complete
signals (as via the decision threshold of the NC model) but also for each signal envelope sample.
Furthermore, this amplitude threshold heuristic allowed for alarms during relearning of the NC model.
The live annotation approach based on evaluation of envelope signals via either of these models (NC
model, threshold heuristic) is visually summarized in Figure 6.

Thus, the threshold heuristic was implemented mainly to allow for timely alarms of safety-critical
whirring workpieces, even when the NC model was not available (i.e, during (re-)learning).
However, parallel anomaly detection by both models additionally allowed us to compare the simple
threshold heuristic with the more advanced NC model (having the potential to detect both sequence
level and local anomalies by taking signal forms into account). For whirr anomalies with their
characteristic and well-understood high-amplitude peak pattern (cf. Figure 5c), we assumed a
good detection rate with the threshold heuristic. For subtle anomalies, however, we assumed
a better detection rate with the NC model. Furthermore, we assumed a smaller FP rate for the
simple threshold heuristic, as it will only generate alarms for characteristic high-energy peak patterns
(i.e., whirring workpieces), while the NC model will also generate alarms for other, more subtle
anomalies (e.g., manifesting in small amplitude deviations in multiple signal locations or across
complete signals). These subtle anomalies were assumed to be visually harder to identify by the
machine operators, thus yielding a higher FP rate for the NC model. In general, among the most
interesting questions regarding online signal annotation via direct human feedback were the following:

• Can online annotations yield reliable signal labels (in comparison to retrospective annotations)?
• Which types of anomalies can a human annotator detect by reviewing sensor signal envelopes

(both during online annotation and retrospective annotation)?
• Can human operators identify subtle anomalies proposed by the NC model?
• On which factors does the reliability of label feedback depend?

These questions are addressed in the following section.
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Figure 6. Visual summary of the live annotation approach: From raw sensor signals, we extract
envelope signals. The envelope signals under review (red) are compared to the normal data (black) or
a representation of it (distance to normal centroid for NC model, crossing of amplitude threshold for
threshold heuristics). When the anomaly score assigned by the anomaly proposing model exceeds a
threshold, an alarm signal is generated via the labeling prototype, which triggers human feedback by
the machine operator. The assigned labels can optionally be fed back to the anomaly proposing model
in order to learn a semi-supervised model (part of future work).

6.2. Label Evaluation

As mentioned in Section 6.1.4, the NC (ED+TI) anomaly detection model and the threshold
heuristic were deployed on our visualization and labeling prototype in order to allow for online
proposition of potential abnormal signals from sensors OP1, OP2, and OP3. Thus, our experiments in
Section 6.1 focused on a comparison of multiple unsupervised anomaly detection models offline on
data sets DS1 and DS2 in order to identify the best choice of anomaly proposing model for deployment
on the labeling prototype. In this section, we evaluate the quality both of these anomaly propositions
and online label feedback by machine operators based on the assumptions made in Section 3 during
the process of recording this additional, third data set DS3. In order to validate our assumptions on
the DS3 data corpus, we compare annotations obtained during this (first) online label feedback to
annotations obtained during a (second) retrospective label feedback where possible.

During retrospective annotation, we had access to labels from multiple annotators per each
proposed signal as mentioned in Section 3. The machine operators agreed to give these second
retrospective annotations for a reasonable amount of DS3 signals. We chose the subset of anomaly
propositions between 12th and 24th of April for a second retrospective annotation, as these data
comprise the most interesting signals (introduction of the labeling prototype, confirmed anomalies
around the 16th of April). In order to make the retrospective labels comparable to the single online
label, we consider the mode (i.e., majority vote) of retrospective labels in Figures 7b, 8b, and 12.

6.2.1. Assumption 1 (Amount and Distribution of Label Feedback)

In Figure 7, the class distribution of anomalies confirmed (true positives) and rejected (false
positives) by annotators are stated for both label-proposing algorithms, the NC model, and the
threshold heuristic. The results are stated separately for online label feedback (Figure 7a) and the
second retrospective label feedback (Figure 7b). Signals proposed as anomaly but not reacted to during
online annotation are thus not displayed in Figure 7a. For retrospective annotation results illustrated in
Figure 7b, however, every anomaly proposition was either confirmed, rejected, or labeled with “Don’t
know” by the annotators.

For online labeling, the threshold heuristic resulted in a smaller degree of false positives than the
NC model and less uncertain labels (“Don’t know”). Furthermore, clear anomaly types like “Whirr”
and “Grinding wheel anomaly” were best identified by the threshold heuristic. Other confirmed
anomalies were labeled as unknown types of anomaly (“Other anomalies”) and typically identified
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in reaction to anomaly propositions of the NC model. We assume that annotators recognized these
signals being outliers but were uncertain about the cause and type of these anomalies due to a more
subtle deviation across larger parts of the signal than for characteristic “Whirr” and “Grinding wheel
anomaly” patterns.

For retrospective labeling, we observe different results (cf. Figure 7b): Signals labeled as
“Don’t know” during online annotation (cf. Figure 7a) were typically labeled either “Normal” or
given an anomaly label (“Whirr”, “Misplaced workpiece” or “Other anomaly”) (cf. Figure 10 for a
qualitative comparison and Figure 12 for a quantitative evaluation). We assume that the possibility
to review signals without time pressure and without the necessity to handle other tasks in parallel
encouraged the annotators to take more time during annotation, whereas the daily routine while
working at the grinding machine necessitated a more timely reaction to proposed labels. The main
difference between online and retrospective labeling was thus found in the redistribution of uncertain
labels to more confidence in clearer decisions about the signal being normal or abnormal.
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Figure 7. Distribution of annotator feedback across classes (cf. Assumption 1): During retrospective
annotation (subfigure b), labels are given more confidently to clear classes (“Normal”, “Whirr”) than
during online annotation (subfigure a).

6.2.2. Assumption 2a (Dependency of Label Feedback on Anomaly Scores)

In the former subsection, we described a high proportion of the online confirmed threshold
model anomaly propositions being of clear anomaly types (“Whirr” and “Grinding wheel anomaly”).
Additionally, we observe a dependency of online confirmation of NC anomaly propositions on the
height of NC anomaly scores (cf. Figure 8) and the time of anomaly proposition (cf. Figure 9).

For anomaly propositions by the NC model, high anomaly scores coincide with high distances
between the signal under review and the learned normal centroid. Anomaly scores are thus a measure
for the clarity of deviation of a signal under review from the learned normal centroid of the NC model.
As we assume more clearly deviating signals proposed as anomalous to be confirmed an anomaly
more frequently, we expect higher accordance between label propositions and label feedback (i.e., both
labeled abnormal) and thus higher metric scores for increasing anomaly scores.

In Figure 8, precision and F1 scores between NC anomaly proposition and label feedback are
illustrated across the height of anomaly scores. Precision and F1 scores were computed for binary
labels (i.e., all anomaly types are considered a single anomaly class), as the NC model only proposes
binary labels (normal vs. abnormal signal). Annotator label feedback was considered as ground
truth and anomaly propositions as predicted labels. NC anomaly propositions with label feedback
“Don’t know” were not considered for computation of the metric scores, as they cannot be assigned
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either of these binary labels. Anomaly propositions by the threshold model were also not considered
in this figure as they come without an intrinsic anomaly score: Neither height nor width nor position
of high-amplitude peaks alone seem to be sole reasons for human annotators to confirm a “Whirr”
anomaly (cf. Section 6.2.5) and thus do not qualify as anomaly scores. NC anomaly detection on the
other hand yields a built-in anomaly score based on the distance of test signals to the learned normal
centroid, which is additionally related to the visually observable degree of outlierness of a test signal.
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Figure 8. Dependency of metric scores (precision, F1 score) for label feedback on the height of anomaly
scores of the NC model (cf. Assumption 2a): For online labels (subfigure a), the dependency between
likelihood of confirmation of proposed anomalies and height of anomaly scores is clearer than during
retrospective annotation (subfigure b).

The data considered for computation of the metric scores in Figure 8 consists of
(label proposition, label f eedback, anomaly score) triplets. Going from left to right in Figure 8a,b,
we successively drop the triplet with lowest anomaly score from the current set of triplets and compute
F1 score and precision score (between label proposition and label feedback) for the remaining triplets.
Thus, the amount of data considered for computation of both metric scores decreases from left to
right: While the leftmost plotted point considers all triplets, the rightmost point considers only a single
label feedback (i.e., the one with the highest anomaly score). For a perfect dependency between the
likelihood of confirmation of anomaly propositions and height of NC anomaly score, we would expect
a monotonic increase of metric scores from left to right.

For online label feedback, both F1 scores and precision scores increase almost monotonically from
left to right and thus with the height of anomaly scores assigned by the NC model. We interpret this
as a confirmation of Assumption 2a, that clearer types of anomalies can be detected more reliably by
human annotators. For retrospective labeling, we observed a similar dependency of metric scores on
the height of NC anomaly scores (cf. Figure 8b) when we consider a comparable range of anomaly
scores as in Figure 8a (anomaly scores between 4 and 13). However, the two rightmost data points
in Figure 8b which illustrate the highest anomaly scores show a sudden decrease in metric scores.
The triplets responsible for these two plotted points were not considered in Figure 8a, as they were
labeled “Don’t know” online and could thus not be judged either as confirmed or rejected anomaly.
Thus, we do not find a similarly clear dependency between the likelihood of anomaly confirmation and
height of NC anomaly scores during retrospective annotation as observed for the online label feedback.

6.2.3. Assumption 2b (Dependency of Online Label Feedback on Time)

When we illustrate anomaly propositions and online label feedback across time, we observe a
temporal dependency of both anomaly propositions and label feedback (cf. Figure 9). Firstly, both
anomaly propositions and label feedback cluster at certain days. This is most obviously the case



Informatics 2019, 6, 38 23 of 36

for April 16th and the surrounding days. Annotators confirmed anomaly propositions with “Whirr”
and “Grinding wheel anomaly” label feedback during the online annotation. Visual inspection of the
machine validated the annotators’ label feedback: Multiple successive whirring workpieces damaged
the grinding wheel and finally resulted in a change of the grinding wheel. Thus, label feedback
at these days can be interpreted as reliable. Furthermore, it is the possibility to consider context
information given by the ability to visually inspect the machine during live annotation which allows
for gathering reliable labels of the earliest beginning of grinding machine damages (i.e., the multiple
successive whirring workpieces resulting in increasing damages at the grinding wheel surface).
This context information cannot be accessed with the common retrospective annotation approaches,
where anomalies have to be judged solely relying on the information given by review of sensor
signals (as additional information like optical measurements are not available in our scenario). As an
additional benefit, being able to detect the earliest beginnings of damages in the grinding wheel surface
(due to alarm generation for whirring workpieces) allows for the adaptation process parameters before
more severe damages in the grinding wheel damage would necessitate a change of the grinding wheel.

Secondly, we observe an exceptionally high amount of rejected anomaly propositions and no
uncertain labels (“Don’t know”) at all on the day of introducing the labeling prototype (April 12th).
While the amount of uncertain labels increases across time, the amount of label rejections decreases.
We assume that anomaly rejections were more often replaced by “Don’t know” labels due to an
increased trust of human annotators in anomaly propositions of the labeling prototype, i.e., small
signal deviations were more often rated as potentially abnormal than clearly rejected. Furthermore,
the human annotators might have learned new characteristic patterns for signals formerly considered
normal due to the anomaly propositions for subtle signal deviations since introduction of the labeling
prototype. We consider these effects as a “calibration” phase of human annotators having to get
accustomed with the labeling prototype before being able to give reliable online label feedback.
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Figure 9. Anomaly propositions and online label feedback across time (cf. Assumption 2b): Confirmed
anomalies cluster around the 16th of April, where an actual damage of the grinding wheels was
confirmed by visual machine inspection.

6.2.4. Assumption 3a (Inter-Annotator Agreement between Multiple Retrospective Annotators)

In addition to assuming high label reliability for visual clear signal deviations (i.e., high anomaly
scores) and days of visually confirmed machine damages, we assumed high label reliability to
coincide with a high amount of inter- and intra-annotator agreement in Section 3.2. The results
both for inter-annotator agreement (among multiple annotators during retrospective labeling) and
intra-annotator agreement (between online label feedback and retrospective labels) are illustrated
qualitatively for each anomaly proposition of either the NC model or the threshold heuristic in
Figure 10. This qualitative evaluation allows judging both class-specific and annotator-specific
differences of annotation agreement. Colors encode the class of annotator feedback. Rows 1 to 3
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illustrate retrospective labels of multiple annotators. Row 4 depicts the majority vote among these
annotators (i.e., mode of rows 1 to 3 per each column). Online label feedback is illustrated in the last
row (row 5). Examples of samples with high and low inter-annotator agreement during retrospective
labeling are depicted in Figure 11.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
Nr. of annotated signal

Annotator 1
Annotator 2
Annotator 3
Majority vote

Online annotator No reactionDon't knowNormalOther a.WhirrMisplaced WPCtrl shaft a.Ctrl wheel a.Grind. wheel a.

Figure 10. Qualitative evaluation of agreement between multiple retrospective annotators and with
online label feedback for signals proposed as anomaly (cf. Assumptions 3a and 3b). While annotators
show high agreement during retrospective annotation, agreement between in situ online label feedback
(row 5) and the majority vote of retrospective annotations (row 4) is low.

0 2 4 6 8
Time (sec)

1

2

3

4

5

6

7

Am
pl
itu

de
 (g

)

(a) Sensor OP1, normal signal

0 2 4 6 8
Time (sec)

1

2

3

4

5

6

7

8

9

Am
pl
itu

de
 (g

)

(b) Sensor OP1, low agreement

0 2 4 6 8
Time (sec)

0

5

10

15

20

25

Am
pl
itu

de
 (g

)

(c) Sensor OP1, high agreement

0 2 4 6 8
Time (sec)

1.5

2.0

2.5

3.0

3.5

4.0

Am
pl
itu

de
 (g

)

(d) Sensor OP2, normal signal

0 2 4 6 8
Time (sec)

1

2

3

4

5

6

Am
pl
itu

de
 (g

)

(e) Sensor OP2, low agreement

0 2 4 6 8
Time (sec)

2

4

6

8

10

Am
pl
itu

de
 (g

)

(f) Sensor OP2, high agreement

Figure 11. Example signals for high and low inter-annotator disagreement: Examples with high
agreement illustrate typical “Whirr” patterns, while examples with low agreement are characterized by
more subtle signal deviations.

Figure 10 confirms a high inter-annotator agreement during retrospective labeling in general
and thus validates interpreting retrospective labels as ground truth labels. The examples with low
inter-annotator agreement depicted in Figure 11b,e visually confirm the subtlety of signal deviations
in comparison to the depicted normal envelopes in Figure 11a,d. Examples for high inter-annotator
agreement as depicted in Figure 11c,f on the other hand illustrate clear anomalous “Whirr” patterns.
This confirms the findings of Section 6.2.1 that clear anomalies with well-known characteristics
(e.g., whirring workpieces) are identified more reliably.

6.2.5. Assumption 3b (Intra-Annotator Agreement between Online Label Feedback and the Mode of
Retrospective Annotations)

Figure 12 summarizes the mismatch between online label feedback and the mode of retrospective
labels (i.e., row 4 in Figure 10) as confusion matrix in a multiclass setting. This illustration allows to
observe class-specific annotation differences quantitatively, while the annotator-specific information



Informatics 2019, 6, 38 25 of 36

from Figure 10 is lost. As in the above, we interpreted high annotation agreement to coincide with
high annotation reliability.
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Figure 12. Quantitative comparison of online label feedback and retrospective label feedback
(cf. Assumption 3b). Similar to the qualitative evaluation in Figure 10, small agreement between
online label feedback and retrospective annotations occurs (i.e., most elements are not situated on the
main diagonal of the confusion matrix).

When comparing online and retrospective labels, we observe class-specific differences.
Signals labeled as “Whirr” during online labeling were confirmed during retrospective labeling
or labeled “Don’t know”. These “Don’t know” labels were given for signals with a characteristic
high-amplitude peak but at an untypical position (second 9) in the signal. Thus, both a typical position
(seconds 3–5 for sensor OP2 and seconds 7–8 for sensor OP1 as depicted in Figure 11c,f) and a certain
minimum height of high-amplitude peaks seemed to have been internalized by the operators as
necessary conditions to classify a signal as “Whirr”.

Signals labeled as “Grinding wheel anomaly” during online annotation were labeled as “Whirr”
by all retrospective annotators. This might be due to the fact that grinding wheel damages as observed
at the 16th of April typically result from multiple successive whirring workpieces. Thus, a smooth
transition between signal patterns from “Whirr” to “Grinding wheel anomaly” exists. This finding
illustrates that context information during (online) annotation was necessary to detect the (visually
confirmed) grinding wheel damages.

Signals labeled “Don’t know” or “Normal” during online annotation were, in most cases, also
given either of these two labels during retrospective annotation or labeled as “Whirr”. For these two
classes, we observe the highest mismatch of online and retrospective labels (i.e., lowest intra-annotator
agreement). The reason for this might be a limited visualization of signals on the labeling prototype
and the necessity to annotate timely and quick during online annotation.

Signals labeled “Other anomaly” during online annotation were either confirmed as “Other
anomaly” or rejected as “Normal”. One of the signals labeled “Other anomaly” during online label
feedback was more clearly specified to be illustrating a wrong type of workpiece being processed
by the grinding machine by one of the annotators. As this label was not provided among the
class buttons during online annotation (cf. Figure 4c), the annotator labeled it as “Other anomaly”
during retrospective labeling but left a note specifying the more detailed anomaly class specification.
This note also specified that the wrong type of workpiece was identified due to a shorter signal with a
characteristic pattern in the end of the signal. Thus, this more specific annotation as a wrong type of
workpiece is assumed to be given due to having more time for the signal reviewing and annotation in
order to identify this subtle but seemingly characteristic signal pattern.

In summary, the major findings on label reliability are as follows:

• Dependency of online label feedback on types of anomaly (Assumption 1): Clear anomaly
types (whirring workpieces, grinding wheel damages) were more often confirmed and typically
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proposed by the threshold model, whereas other subtle anomalies were confirmed more seldom
in general and typically proposed by the NC model (cf. Figure 7).

• Dependency of label feedback on height of anomaly scores (Assumption 2a): Higher anomaly
scores for anomaly propositions of the NC model resulted in higher precision and F1 scores
(cf. Figure 8). We interpret this to be due to clearer signal deviations that were better observable
by the human operator, resulting in more certain and thus reliable online label feedback. This
dependency was more clearly observable for live annotations than for retrospective annotations.

• Dependency of online label feedback on time (cf. Assumption 2b): High amounts both of
anomaly propositions and online label feedback clustered at days of visually confirmed machine
damages (cf. Figure 9). This verifies the sensibility of anomaly propositions and reliability
of online label feedback at these days. Furthermore, we observed a “calibration” phase of
users getting accustomed with the labeling prototype where the labeling behavior of users
changed from tending to reject anomaly propositions to reacting with labeling signals as uncertain
(“Don’t know”). We interpret this latter finding as increased trust of human annotators in anomaly
propositions prompted via the labeling prototype.

• Reliability of retrospective annotations (Assumption 3a): Retrospective annotations illustrated
high inter-annotator agreement especially for the class “Whirr” (cf. Figure 10). This confirms
high reliability of retrospective labels especially for this anomaly class. Furthermore, signal
examples illustrated in Figure 11 visually confirm that signals with high inter-annotator
agreement were clearly identifiable as signal outliers and depict a typical “Whirr” signal pattern.
On the other hand, examples with low inter-annotator agreement were characterized by more
subtle deviations.

• Reliability of online annotator feedback (cf. Assumption 3b): Similarly, online label feedback
showed a high agreement with retrospective labels for the visually clearly identifiable signal
deviations of class “Whirr” (cf. Figures 10 and 12). More subtle and uncertain signal outliers were
more likely to be labeled an anomaly during retrospective labeling (cf. Figures 7b and 10). We thus
interpret this clear type of “Whirr” anomalies to be labeled most reliably during online annotation.

Additional to assumptions on annotation reliability (Assumptions 1 to 3) we made assumptions
on user motivation (Assumptions 4 to 5).

6.2.6. Assumptions 4a and 4b (Reaction Rate and Reaction Latency during Online Label Feedback)

We assumed high user motivation to coincide with a high reaction rate to anomaly propositions
(Assumption 4a) and small reaction latencies of feedback to anomaly propositions (Assumption 4b).
Here, reaction is defined by any feedback by the operator (confirmation, rejection, or label
“Don’t know”). Figure 13 states reaction rates for both the threshold heuristic and the NC model
and illustrates the distribution of observed reaction latencies. Latencies were measured in signals,
i.e., a latency of 0 signals represents direct annotator feedback. Reaction rates were measured by
the fraction of anomaly propositions which the machine operator reacted to. Both models show a
similarly small reaction latency with direct feedback given to most anomaly propositions. For the
NC model, we omitted a single outlying bin at a reaction latency of 177 signals due to reasons of
visualization of the histogram. These 177 successive NC anomaly propositions with high-latency
feedback were prompted on April 23rd and 24th and were characterized by occurring as burst of small
anomaly scores (i.e., visually subtle signal deviations). We assume that missing feedback for these
successive propositions is due to thorough reviewing of subtle signal deviations throughout these
episodes of anomaly propositions, i.e., the reviewing spanned multiple of these successive anomaly
propositions. When we omit this single outlying latency value of 177 signals, the NC reaction rate
computes to 0.508. When we consider the outlying latency value, we compute an NC reaction rate
of only 0.127 (cf. Figure 13b). In both cases, the reaction rate of the NC is smaller compared to the
threshold heuristic (0.730, cf. Figure 13b). We relate this again to the visual clarity of “Whirr” and
“Grinding wheel anomaly” patterns in the signals proposed by the threshold heuristic.
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Figure 13. Reaction rates (cf. Assumption 4a) and histograms of reaction latencies (cf. Assumption 4b)
for online label feedback: Reaction latencies are small for both anomaly detection models. The reaction
rate is smaller for the NC model (subfigure b) than for the threshold model (subfigure a).

6.2.7. Assumption 5 (Dependency of User-Initiated Actions on Time)

Finally, Figure 14 illustrates the amount of user-initiated actions during online annotation and
its change across time. Similar to Figure 9, we observe a clustering of user-initiated annotations and
relearnings close to the visually confirmed grinding wheel damage at April 16th. We interpret this
as a sign of high user motivation, as the amount of user-initiated activity increases when necessary,
i.e., for high densities of real anomalies and resulting process adaptations.
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Figure 14. User-initiated actions across time (cf. Assumption 5): Anomaly reports, process adaptation
reports and user-triggered relearning. Similar to clusters of anomalies in Figure 9, user-initiated actions
cluster around the 16th of April, where damage of the grinding wheels was visually confirmed.

In summary, the major findings on user motivation are as follows:

• Relation between user motivation and user reaction latency/rate (Assumptions 4a and 4b):
Reaction latencies for online label feedback were small for both anomaly proposing models
(Figure 13), which we interpret as a sign of high user motivation. The smaller reaction rate to NC
anomaly propositions might be related to the more thorough reviewing of subtle signal deviations
which characterized many of the NC anomaly propositions.

• Relation between user motivation and time (Assumption 5): We observed user-initiated actions
only during days of visually confirmed machine damages (i.e., grinding wheel damage on April
16th) (Figure 14) and changes of machine parts (i.e., change of grinding wheel on April 16th).
We interpret this as a sign of high user motivation to annotate signals.

7. Conclusions

In this study, we suggested an alternative approach to retrospective annotation of sensor streams
in industrial scenarios. Retrospective annotations cause high costs (due to the additional time spent
by domain experts for signal annotation) and allow only a small amount of context information
to be considered during annotation (neither workpieces nor machine tools are accessible for visual
inspection). On the other hand, our direct and in situ live annotation approach enables highly reduced
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annotation cost (in-parallel annotation of signals at recording time by domain experts) while exposing
a higher amount of meta information during annotation (possibility to assess both machine tool and
workpieces visually). The drawback of live annotation however is the reduced time for annotation.

The goal of this work was to study if and for which types of anomalies live and in situ
annotation proves superior to retrospective annotation by the same group of domain experts (machine
adjusters and machine operators). This was assessed via comparison of live annotations (i.e., machine
operator’s feedback to anomaly propositions) and retrospective annotations (by multiple domain
experts) gathered in real-world industrial manufacturing environments. Additional to estimating
reliability of live annotations, we aimed to identify influential factors on reliability of live annotations.
These influential factors were summarized in multiple assumptions and tested on validity with the
data collected in this study.

For data collection, we equipped a grinding machine in a real-world manufacturing setting
with vibration sensors for long-term measurements. Additionally, we developed both hardware
and software of a prototypical system for visualization and in situ annotation of sensor signals.
The development process included the design of a suitable GUI for in situ signal annotation, which was
guided by end user experience at several steps of the design process. Generic unsupervised anomaly
detection algorithms were deployed on the labeling prototype to propose signals for annotation.
Operators of the grinding machines reacted to these anomaly propositions with in situ label feedback.
This online annotation approach allowed us to assemble a large corpus of real-world manufacturing
sensor data (123,942 signals) with domain expert annotations for three different anomaly types. In a
follow-up study, we will study how we can use these live annotated data sets to train (semi-)supervised
anomaly detection and classification models.

As expected, a simple threshold heuristic on signal amplitude found the most typical and severe
type of anomaly present at the grinding machine in this study (whirring workpieces) reliably, as it
is tailor-made for its exact type of manifestation in the signals (high-amplitude peaks). Furthermore,
anomalies caused by multiple successive whirring workpieces (grinding wheel damages) were detected
reliably online as confirmed by visual machine inspections. However, many of the signals proposed
as anomalous by the threshold model were rejected (FPs) or labeled with uncertainty regarding the
presence of an anomaly (label “Don’t know”). We assume this is due to operators judging signal
examples as “Whirr” not only dependent on the presence but also a certain minimum height and
expected position of high-amplitude peaks (cf. Section 6.2.5).

The Nearest Centroid (NC) model was implemented in order to find other more subtle types
of anomalies with less characteristic patterns than “Whirr” anomalies by means of a sequence-level
Euclidean distance measure. A small amount of anomaly propositions was confirmed online with the
label “Other anomaly”. Most signals proposed as potential anomalies however were labeled as normal
(FPs) or uncertain (“Don’t know”). The likelihood of a proposed signal to be confirmed as anomaly
increased with the height of the NC anomaly score, i.e., the clarity of its signal deviation. All of the
above illustrates that it is hard for operators to specify types of subtle anomalies without having
internalized a characteristic pattern of manifestation in signals. We assume that operators can learn
such characteristic patterns over time by being shown multiple examples of these subtle anomalies
(as our visualization and labeling prototype does). However, a more appropriate form of signal
representation by TFDs or feature scores might be necessary in order to represent signals in a form
where these subtle anomaly types manifest more clearly and in characteristic identifiable patterns.

Both the amount of anomaly confirmations and user-initiated actions (reporting anomalies
and process adaptations, triggering re-learning of the anomaly detections models after process
adaptations) during online annotation clustered with days of visually confirmed machine damages
(around April 16th), which we interpret as a sign of reliable labels for the reported anomaly types
(“Whirr” and “Grinding wheel anomaly”) and good user motivation. The latter was confirmed by
small reaction latencies and high reaction rates to online anomaly propositions.
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High inter-annotator agreement of multiple annotators during a second, retrospective annotation
phase confirmed a high reliability of annotations for anomaly types with a clear and unique signal
pattern: Signals labeled as “Whirr” during online annotation were reliably identified as “Whirr”
during retrospective labeling. Furthermore, being able to inspect the grinding machine visually after
the occurrence of whirring workpieces allowed to identify resulting damages in the grinding wheel
damages at an early state (i.e., before severe damages necessitate a change of the grinding wheel).
It is this context information given by the possibility of visual inspection which allows for a reliable
annotation of (early) grinding wheel damages in the data. This possibility to visually inspect the
grinding machine during emergence of the proposed anomaly is not given during retrospective
annotation and verifies the benefit of live annotation for identifying these types of clear anomalies at
an early stage.

On the other hand, large differences between retrospective labels and the online annotations
occurred mainly for subtle anomaly types. This confirms the findings from above that types of
subtle anomalies are hard to identify without a characteristic internalized pattern of manifestation.
For these subtle anomalies, having enough time for an extensive review of signals (as present during
retrospective annotation) seems to outweigh the benefit of context information given by visual
inspection of machine and workpieces during live and in situ annotation. This was confirmed in
discussions with the annotators. Thus, we found the restricted time for signal review during online
annotation to be a limiting factor to our approach when the signals under review illustrated only
subtly deviating and unknown, non-characteristic signal patterns.

For scenarios where multiple online annotators are accessible, the results found for the comparison
of live and in situ annotations to retrospective annotations might not generalize. Furthermore, we argue
that generalizing results from the comparison of live annotations with retrospective annotations
to retrospective crowdsourcers’ annotations is not valid, as we assume the experience of machine
operators to be of high importance in order to link observed signal patterns to a physical cause and
dedicated type of anomaly (e.g., wrong type of workpiece being processed resulting in a shortened
signal with characteristic pattern in the end, cf. Section 6.2.5).

The main insight of the study was that anomaly types that manifest in clearly deviating
and well-known, characteristic signal patterns can be identified reliably via the proposed live
annotation approach. Other signals proposed as potential anomalies that illustrated an unknown,
less characteristic or more subtly deviating signal pattern were mostly labeled as normal. The question
remains whether the small amount of confirmations of subtle anomalies is caused by insufficient
representation of signal information in envelope signals, the simplicity of the anomaly detection
models not being able to detect or even cluster these subtle anomalies or simply seldom occurrences of
these types of anomalies in general. These questions shall be clarified in future experiments regarding:

• Other types of signal representation for a better visualization of anomalous signal information
(e.g., raw signals, TFDs or feature score trends).

• More advanced anomaly detection models with the ability to cluster anomalies and give feedback
about most anomalous signal regions. The former allows prompting potential anomalies together
with formerly prompted signals of the same cluster, which in turn raises awareness for subtle
but characteristic similar signal deviations and allows operators to gradually build up an
internalized characteristic pattern of these more subtle anomalies. The latter allows for local
highlighting of anomalous regions in signals visualized on the labeling tool screen (e.g., by local
time series distance measures, shapelet approaches or attention-based models). This highlighting
of anomalous signal regions also helps operators to learn new characteristic patterns for other
anomaly types.

• Semi-supervised and weakly supervised approaches: In order to clarify whether including label
feedback for tuning of anomaly detection model hyperparameters allows to better align anomaly
propositions with the operator’s concept of what an anomaly is (i.e., reduce the FP rate).
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Appendix A. Original German Version of Screens of Labeling Prototype

(a) Default screen: Continuous visualization (b) Screen 2: Anomaly labeling (binary)

(c) Screen 3: Anomaly labeling (multi-class) (d) Screen 4: Process adaptation labeling (multi-class)

Figure A1. Screens of the visualization and labeling prototype (original German version). A version
of the screens translated to English can be found in Figure 4. A detailed description of the functional
workflow of the screens can be found in Section 5.2.
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