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ABSTRACT Long-Range Wide Area Networks (LoRaWAN), a prominent technology within Low-Power
Wide Area Networks (LPWANs), have gained traction in remote monitoring due to their long-range
communication, scalability, and low energy consumption. Compared to other LPWANs like Sigfox, Ingenu
Random Phase Multiple Access (Ingenu-RPMA), Long-Term Evolution for Machines (LTE-M), and
Narrowband Internet of Things (NB-IoT), LoRaWAN offers superior adaptability in diverse environments.
This adaptability makes it particularly effective for Human Activity Recognition (HAR) systems. These
systems utilize wearable sensors to collect data for applications in healthcare, elderly care, sports,
and environmental monitoring. Integrating LoRaWAN with edge computing and Internet of Things
(IoT) frameworks enhances data processing and transmission efficiency. However, challenges such as
sensor wearability, data payload constraints, energy efficiency, and security must be addressed to deploy
LoRaWAN-based HAR systems in real-world applications effectively. This survey explores the integration
of LoRaWAN technology with wearable sensors for HAR, highlighting its suitability for remote monitoring
applications such as Activities of Daily Living (ADL), tracking and localization, healthcare, and safety.
We categorize state-of-the-art LoRaWAN-integrated wearable systems into body-worn, hybrid, object-
mounted, and ambient sensors. We then discuss their applications and challenges, including energy
efficiency, sensor scalability, data constraints, and security. Potential solutions such as advanced edge
processing algorithms and secure communication protocols are proposed to enhance system performance
and user comfort. The survey also outlines specific future research directions to advance this evolving
field.

INDEX TERMS HAR, IoT, LoRaWAN, LPWAN, remote monitoring, wearable sensors, sensor integration,
survey.

I. INTRODUCTION

THE EVOLUTION of human activity tracking devices,
particularly those requiring remote data transmission,

has been significantly influenced by advances in sensing and
communication technologies. Wearable sensors, in particular,
have benefited from the development of Low-Power Wide
Area Networks (LPWANs) [1], notably the Long-Range
Wide Area Network (LoRaWAN) developed by the LoRa
Alliance [2], [3]. The combination of LPWAN technologies’
wide-area mobility and the flexibility of compact wearable

sensors is paving the way for innovative Human Activity
Recognition (HAR) systems that operate efficiently across
diverse environments. This integration not only enhances the
scalability of HAR systems but also ensures their adaptability
to varying user needs and environmental conditions.
Several LPWAN technologies have been instrumental

in this progress, including Sigfox, Long-Term Evolution
for Machines (LTE-M), Narrowband Internet of Things
(NB-IoT), and Ingenu Random Phase Multiple Access
(Ingenu-RPMA) [4], [5], [6], [7], [8], [9], [10]. While these
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TABLE 1. Research questions.

technologies have been instrumental in addressing significant
challenges in remote wireless access [11], they are not
without limitations. Common issues include limited data
transmission distances and energy inefficiencies, which have
historically restricted the widespread adoption of wearable
HAR systems.
LoRaWAN, however, offers a compelling solution by pro-

viding long-range communication coupled with low power
consumption. This positions LoRaWAN as a critical enabler
for next-generation HAR applications [12]. As LPWAN
technologies continue to advance, HAR systems have the
potential to revolutionize sectors such as healthcare, sports,
and beyond, providing scalable and adaptable solutions.
Current research is increasingly focused on making

LoRaWAN-integrated wearable sensor systems more user-
friendly, ensuring they are unobtrusive, convenient, and
widely accepted. With ongoing advancements, this technol-
ogy holds significant promise for enhancing applications that
improve safety and quality of life across various contexts.
Moreover, efforts are being directed toward enhancing these
systems’ accuracy, reliability, and energy efficiency for
effective HAR and processing [13]. This involves effectively
managing and interpreting sensor data while accounting
for the complexity of human behavior and environmental
interactions, whether the data is analyzed directly on the
device or after transmission, depending on the specific
application [14].

A. MOTIVATION AND RESEARCH QUESTIONS
Integrating LoRaWAN wireless technologies with wearable
sensor networks for remote HAR reveals several key research
topics. These topics encompass the capabilities, challenges,
and potential applications of combining these technologies.
While related surveys exist, no recent review focuses explic-
itly on integrating LoRaWAN technology with wearable
sensor networks.
This work fills that gap by examining recent advancements

in LoRaWAN-integrated wearable sensor networks for HAR.
We explore how this technology transforms the monitoring
and analysis of human activities, particularly in remote
or challenging environments. This article aims to be a
pioneering effort in consolidating, analyzing, and presenting
the state-of-the-art in this field.
This study addresses three key research questions, as

summarized in Table 1.

B. NOVELTY AND RESEARCH CONTRIBUTION
Remote HAR using LoRaWAN technology presents several
challenges. These include the complexity and variability
of human activities, the diversity of sensors involved, the
inherent noise in sensor data, and the resource constraints
of wearable devices. These challenges highlight the need for
a detailed review, which this paper addresses through the
following key contributions:

• A detailed and current review of recent advance-
ments in wearable sensor networks integrated with
LoRaWAN for HAR applications. This work covers
the latest developments in wearable sensor tech-
nologies, network architectures, and data processing
techniques.

• Exploring the primary real-world applications of these
systems, such as healthcare monitoring, safety, and
tracking. This analysis demonstrates the practical fea-
sibility and benefits of deploying LoRaWAN-integrated
HAR systems.

• Assessing the performance of existing HAR systems
across various LoRaWAN parameters, including spread-
ing factor, coding rate, and data rate, with a particular
focus on energy efficiency. This evaluation reveals
how these parameters affect system performance and
highlights opportunities for optimization.

• Identifying current limitations, such as sensor wearabil-
ity, network reliability, and data security. Additionally,
the paper explores future research directions, including
integrating artificial intelligence to enhance data pro-
cessing, improving network scalability, and developing
more advanced, compact sensors.

C. PAPER FORMULATION
This article is structured as shown in Fig. 1 and is organized
as follows:

• Section II provides a review of LPWANs, includ-
ing Sigfox, LTE-M, NB-IoT, Ingenu-RPMA, and
LoRaWAN, with a primary focus on integrating
LoRaWAN with HAR.

• Section III describes the research methodology, includ-
ing the review process, selection criteria, and an
overview of related surveys.

• Section IV presents recent developments in LoRaWAN-
integrated HAR systems, with a detailed analysis of
their architecture, applications, sensor utilization, and
other technical specifications.

• Section V discusses critical challenges such as wear-
ability, energy efficiency, security, data accuracy,
and scalability and suggests potential future research
directions.

• Section VI provides a comprehensive discussion on the
scope of this review work.

• Section VII concludes the paper by summarizing the
findings and proposing future work, with abbreviations
listed in the Appendix.

6714 VOLUME 5, 2024



FIGURE 1. Paper outline. This diagram illustrates the structure and flow of this survey paper, connecting key sections from the introduction to the Appendix.

II. BACKGROUND INFORMATION
A. LOW-POWER WIDE AREA NETWORKS
This section discusses the most commonly used LPWAN
technologies in the industry today. Table 2 compares these
technologies, including LTE-M, NB IoT, Ingenu RPMA,
Sigfox, and LoRaWAN, based on features like range, data
rate, battery life, security, cost, and latency. These features
compare each technology’s strengths and limitations, helping
identify the best choice for specific IoT applications.

1) SIGFOX

Sigfox is an LPWAN technology that operates across
unlicensed sub-1 GHz industrial, scientific, and medical
(ISM) band carriers and ultra-narrowband channels [15], [16].
It uses proprietary technology designed for systems with
intermittent transmission of low data volumes [17]. Devices
connected via the Sigfox protocol can send and receive
a maximum of 140 messages, each limited to 12 bytes
in length, at a maximum transfer rate of 100 bps. These
constraints reduce the effectiveness of the technology for HAR
applications [18], [19]. Sigfox achieves outstanding global
coverage and low power consumption at a relatively low
deployment cost, making it suitable for low-power, intelligent,
interconnected devices. However, its weaknesses include a
low data rate, high latency, and limited scalability potential
compared to newer LPWAN technologies like LoRaWAN,
raising concerns about its use in wearable HAR frameworks.

2) LTE-M

LTE-M is a cellular LPWAN wireless communication proto-
col that utilizes LTE infrastructure to transmit data between
connected devices and base stations or servers [20]. LTE-M
is well-suited for wearable HAR systems due to its high data

rate, low latency, strong connectivity, and scalability potential
for over 100,000 devices [5]. However, the deployment cost
for LTE-M networks is high because it requires existing LTE
infrastructure. Additionally, devices connected via LTE-M
generally have higher power consumption rates than other
LPWAN protocols. Consequently, these factors can limit
the practicality of LTE-M for certain wearable applications
where cost and energy efficiency are critical.

3) NB-IOT

NB-IoT is an LPWAN protocol that leverages licensed
frequency bands and existing LTE infrastructure for wireless
communication [21]. The technology offers enhanced cover-
age, supporting many devices that require low data volumes
over long periods, which is essential for the scalability
of wearable HAR systems [17], [19]. The strengths of the
NB-IoT protocol include its scalability to support massive
connections, low power consumption, low latency, and
secure wide-area coverage due to its use of LTE cellular
network channels [21], [22]. However, the deployment cost
for NB-IoT is higher because it relies on licensed proprietary
cellular LTE infrastructure [18]. Consequently, NB-IoT is
most suitable for applications requiring low-data-rate trans-
mission, such as smart metering and intelligent environment
monitoring. While NB-IoT’s features and capabilities are
well-aligned with effective remote monitoring needs across
multiple devices, the high deployment cost limits its suitabil-
ity for large-scale wearable HAR systems. This limitation
necessitates alternative solutions.

4) INGENU-RPMA

Ingenu-RPMA is a proprietary random-phase multiple-
access LPWAN protocol that operates within the 2.4 GHz
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TABLE 2. Comparison of key features, strengths, and limitations across various LPWAN technologies.

frequency band [23]. The technology transmits data using
the direct sequence spread spectrum technique, limiting the
peak data rate to 80 kbps [5]. The strengths of Ingenu-
RPMA include low power consumption, high scalability
(with each access point capable of covering over 300 square
miles by optimizing receiver sensitivity), and robust security
encryption frameworks [24], [25], [26]. However, Ingenu-
RPMA is vulnerable to interference during data transmission
since it operates on the 2.4 GHz frequency band, also used by
Bluetooth and Wi-Fi networks [27]. Additionally, the higher
deployment costs of Ingenu-RPMA compared to LoRaWAN
limit its applicability in large-scale wearable HAR.

5) LORAWAN

LoRaWAN is an open standard protocol that connects
multiple sensors across extensive areas, creating wide area

networks with high capacity, long range, and low power
consumption [31]. This makes it possible to develop more
reliable remote activity monitoring systems by leveraging
its strengths [5], [24], [36], [37], [38]. This technology is
discussed in detail in the coming section of this chapter.
Implementing remote wearable sensor networks for HAR

is often constrained by various factors. However, LoRaWAN
technology offers several features that make it an ideal choice
for these networks [33], [39], [40], [41]. The key advantages
of LoRaWAN for wearable sensor networks include:

• Extended Battery Life: Wearable sensors are typically
compact, with limited battery capacity. LoRaWAN’s
low-power consumption significantly extends the bat-
tery life of these devices, enabling extended periods of
monitoring without the need for frequent recharging.
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• Wide Coverage: LoRaWAN provides extensive cover-
age, which is particularly advantageous for wearable
sensor networks, especially for mobile users in remote
areas. This ensures consistent data transmission even
when users are far from the data collection point.

• Reliable Data Transmission: Integrating LoRaWAN
with wearable sensors enhances the accuracy and
reliability of data transmission. LoRaWAN’s robust
modulation techniques help minimize data packet loss,
even in noisy environments.

• Scalability: LoRaWAN can support many nodes, which
is crucial for the scalability of wearable sensor
networks. This capability allows for monitoring large
populations or expanding the network with additional
sensors.

• Data Security and Privacy: In HAR, the security
and privacy of data, particularly susceptible health
information, are paramount. LoRaWAN incorporates
robust security measures, including end-to-end encryp-
tion, ensuring the secure transmission of data from
wearable sensors.

Despite these advantages, some considerations exist when
integrating LoRaWAN with specific systems. Its bandwidth
may not always be suitable for transmitting large volumes of
data or applications requiring real-time transmission, though
this is not typically necessary for wearable sensors [10], [42].
In densely populated areas, there is some susceptibility
to channel congestion; however, with effective network
planning and the integration of complementary technologies,
these limitations can be minimized to maintain strong
performance.

B. INTEGRATION OF LORAWAN WITH HAR
Integration, in this paper, refers to combining HAR systems
with LPWAN technologies. The integration of LPWANs with
wearable sensor networks for HAR is a rapidly growing area
within wireless communication, and IoT [30], [39], [43].
This section first explores the features and capabilities of
LoRaWAN technology, followed by a concise overview of
HAR systems. These discussions provide the foundation for
understanding how these technologies can be integrated, a
topic covered in detail later in this subsection.

1) LORAWAN TECHNOLOGY OVERVIEW

The LoRaWAN protocol operates in the sub-GHz unlicensed
ISM radio bands. It uses the physical layer of LoRa radio
technology developed by Semtech [44] and employs chirp
spread spectrum (CSS) modulation to enhance communica-
tion [1], [45]. This modulation encodes a specific number
of spreading factor (SF) bits per chirp, effectively creating
virtual channels. In Europe, SF values range from 7 to 12,
corresponding to data rates between 0.3 and 11 kbps [46].
Without these regional constraints, the data rates can extend
up to 51 kbps [47]. Channels using different SF values
are nearly orthogonal, allowing for efficient multiplexing.
Notably, frames sent at higher SFs, while longer, offer more

FIGURE 2. Standard LoRaWAN Architecture: An overview showing end devices
connecting through gateways to network and application servers via the internet.

excellent resistance to interference, facilitating adaptive data
rate (ADR) strategies to optimize communication based on
network conditions.
LoRaWAN integrates forward error correction (FEC)

coding, supporting coding rates (CR) of 4/5, 4/6, 4/7, and
4/8 to enhance data transmission reliability. Key parameters
influencing the LoRa link include carrier frequency, trans-
mission power (TP), and bandwidth (BW) [48]. Most chipset
implementations operate at frequency bands of 125 kHz,
250 kHz, or 500 kHz, although some versions support
frequencies as low as 7.8 kHz [1].
LoRaWAN offers extensive coverage: up to 40 km in

rural areas, up to 10 km in urban environments, several
kilometers outdoors in general conditions, and hundreds of
meters indoors [42], [45], [49], [50], [51], [52]. Coverage
can be further extended with the use of range extenders.
To comply with regulations governing unlicensed

frequency bands, such as the ISM band at 868 MHz in
Europe, LoRaWAN devices must adhere to power lim-
its [1], [45]. The maximum transmission power is restricted
to 14 dBm, often regulated through mechanisms like listen-
before-talk (LBT) or duty-cycled operations, which help
ensure fair usage of the medium. For medium access,
LoRaWAN typically uses the Additive Links On-line Hawaii
Area (ALOHA) protocol, which imposes a standard duty
cycle limit of 1%. This duty cycle limit can vary depending
on the specific channel and region [53].
LoRaWAN Network Architecture: The network

architecture of LoRaWAN technology and a sample
implementation is shown in Fig. 2. It comprises three main
components: end devices (mobile or stationary), base station
gateways, and a LoRaWAN server. The gateways function
similarly to base stations in cellular networks, monitoring
all channels and spreading factors (SFs) simultaneously.
They forward uplink packet messages to the network server
(NS) and manage downlink messages. The maximum size of
LoRaWAN messages depends on the data rate and regional
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FIGURE 3. LoRaWAN Device Classes: Class A (minimal power), Class B (scheduled
downlink), and Class C (continuous downlink) for varied IoT applications.

parameters, typically ranging from 51 to 222 bytes for
uplink and slightly less for downlink [8]. Gateways receive
LoRa-modulated signals via their antennas and connect to
the Internet through options such as Wi-Fi, 4G, 5G, Ethernet,
and LTE-M. The network server (NS) within the LoRaWAN
server manages network activities and routes data to one
or more application servers (AS) for end-user access. The
LoRaWAN server can operate as a public, private, or hybrid
network.
The LoRaWAN specification does not define the backbone

network’s implementation or the methods for extracting data
from the application server. IP-based wired networks and
message-oriented middleware, such as Message Queuing
Telemetry Transport (MQTT) and HyperText Transfer
Protocol (HTTP), are commonly used to connect end-
user applications [54]. This flexible architecture allows
for separate ownership of devices, infrastructure, and data,
enabling innovative services and business models.
LoRaWAN Security: LoRaWAN supports robust security

mechanisms, including AES-128 encryption and message
integrity checks, to facilitate secure private networks. For
device authentication and registration, LoRaWAN offers
two methods: over-the-air activation (OTAA) and activation
by personalization (ABP) [1]. The Network Session Key
(NwkSKey), managed by the network server (NS), ensures
data integrity. On the other hand, the Application Session
Key (AppSKey), managed by the application server (AS),
encrypts data for each session.
End Device Classes: LoRaWAN end devices can be

configured to meet specific power and operational require-
ments, starting with Class A. In this mode, an end device
transmits uplink messages, followed by two short receive
windows for downlink messages. This setup minimizes
power consumption but leads to higher latency. Fig. 3
illustrates the additional standards, Class B and Class C,
which offer enhanced downlink coordination and continuous
listening capabilities, respectively. However, they require
more power. Class B devices feature scheduled receive

windows for downlink messages, whereas Class C devices
have continuous receive windows, providing the lowest
latency. While Class A devices can switch in either Class B
or Class C modes as needed, Class B and Class C devices
are not interchangeable due to distinct differences in their
operational protocols [24]. This flexibility is crucial for
adjusting device behavior to specific network conditions and
application needs.
LoRaWAN technology’s classification system and efficient

network management make it ideal for various IoT appli-
cations, including HAR. Each LoRaWAN device class is
tailored to specific application needs. For example, Class
A devices, which periodically transmit data, are suited for
health and fitness tracking by monitoring users’ physical
activities over time. Class B devices, with scheduled receive
windows, are well-suited for continuous monitoring of
elderly individuals, enabling the detection of falls or irregular
movements to enhance safety in assisted living environments.
Class C devices, offering continuous receive windows, are
optimal for real-time monitoring of athletes during training
or competitions, allowing for precise activity recognition and
performance analysis.

2) HUMAN ACTIVITY RECOGNITION

HAR involves the identification and analysis of human
movements using various sensing technologies. Typically,
HAR systems utilize wearable sensors like accelerometers,
gyroscopes, and magnetometers to monitor a range of activ-
ities, from basic motions such as walking or sitting to more
complex behaviors like exercising or working [55], [56]. The
main objective is to translate raw sensor data into meaningful
insights for applications in healthcare, sports, surveillance,
and ambient assisted living [57], [58], [59], [60].
Recent advancements in machine learning (ML) have

significantly enhanced the accuracy and real-time capabilities
of HAR systems [61]. In addition to traditional inertial
measurement units (IMUs), advanced HAR systems are capa-
ble of integrating a more comprehensive array of sensors.
Pressure sensors offer insights into weight distribution [62],
infrared sensors enable non-contact motion tracking, and
environmental sensors provide context by monitoring fac-
tors like temperature and lighting [63], [64]. Furthermore,
biochemical sensors, which assess physiological parameters
such as sweat composition, and Global Positioning System
(GPS) technology, essential for outdoor activity recognition,
are becoming increasingly important [65].
To ensure effectiveness, HAR systems must accurately

detect and evaluate human actions through advanced
wearable sensors. The evolution of wearable technology,
often termed Wearable 2.0, has introduced smart clothing
embedded with a variety of sensors, such as electro-
cardiogram (ECG) sensors for monitoring heart activity,
electromyography (EMG) sensors for muscle activity, and
photoplethysmography (PPG) sensors for blood flow detec-
tion [66]. These sensors are increasingly integrated with
cloud-based intelligence to provide continuous, real-time
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health monitoring and analysis. This integration allows for
more comprehensive data collection and analysis, enabling
early detection of health issues and personalized feed-
back [67]. Additionally, current designs for wearable sensors
prioritize stretchability and adaptability to conform to the
body’s movements, enhancing user comfort and data accu-
racy. Such advancements are crucial for improving the
reliability and applicability of HAR systems in healthcare,
fitness, and beyond [68].

HAR systems are primarily categorized into sensor-based
and video-based approaches [69]. This paper concentrates
on sensor-based HAR, which mainly relies on data from
IMUs typically embedded in wearable devices and smart-
phones [70], [71], [72]. These systems are versatile, widely
applicable, and remarkably effective in monitoring health
and lifestyle activities. In contrast, video-based HAR, which
utilizes cameras to capture and analyze motion, is often
constrained to specific environments.

3) LORAWAN-INTEGRATED WEARABLE SENSORS FOR
HAR SYSTEMS

Sensor-based modalities for HAR systems are classified
into three main categories: ambient, object, and body-worn
sensors [73]. Some HAR techniques are specific to a sensor
type, while others use hybrid systems that combine different
sensors for greater accuracy and reliability [74]. This
section outlines these sensor categories and their applications
and highlights recent works that integrate LoRaWAN with
each sensor type for improved HAR performance.
Ambient Sensors: These sensors detect environmental

changes, such as temperature, pressure, sound, and motion,
to infer human activity indirectly rather than directly
measuring it [58]. Recent advancements, like the work
by [75], have successfully integrated these sensors with
LoRaWAN technology. This integration not only improves
data transmission reliability but also extends the operational
range of HAR systems. Many HAR projects have employed
ambient sensors in ambient-assisted living applications
[76], [77], [78], [79], [80].
Object Sensors: Object sensors are typically mounted on

items to track their movement, such as Radio-Frequency
Identification (RFID) tags, to facilitate activity recogni-
tion [81], [82], [83]. Unlike body-worn sensors, object
sensors are designed to monitor the movement of specific
objects, offering insights into human activities. For example,
an intelligent door can use an accelerometer to detect whether
it is open or closed. These sensors have been employed in
various applications, including healthcare, physical activity
detection [84], and smart home automation. Although they
are less commonly used than body-worn sensors due to
deployment challenges [58], combining object sensors with
other types is increasingly popular for detecting a broader
range of activities. In HAR, object sensors integrated with
LoRaWAN systems have been applied to scenarios such
as emergency and fall detection systems for healthcare
monitoring [85], [86].

Body-Worn Sensors: Body-worn sensors, such as
accelerometers, magnetometers, and gyroscopes, are typ-
ically worn or embedded in portable devices like
smartphones, watches, bands, glasses, or helmets. These
sensors capture data, specifically acceleration and angular
velocity, that vary with respect to human body movements
and activity. Analyzing captured data facilitates the detection
and classification of various human activities. In previous
research, an LPWAN-based wrist-worn end device embed-
ded with an accelerometer and gyroscope sensors was
developed to identify and categorize activities of daily living
accurately (ADL) [87]. This technology demonstrated high
accuracy, proving effective in recognizing everyday tasks.
Other studies have also shown that body-worn sensors are
increasingly prevalent in LoRaWAN-based HAR systems
[35], [88], [89], [90], [91].
Hybrid Sensors: Hybrid sensors combine multiple sensor

modalities to improve data accuracy and reliability in
HAR systems [74]. By integrating various sensors such
as temperature, pressure, motion, and light sensors, hybrid
systems provide a more comprehensive understanding of
environments and related human activities. This multifaceted
data collection is instrumental in complex applications
like environmental monitoring, healthcare, and industrial
automation, where a single sensor type may only capture
some relevant features. For example, in remote healthcare
monitoring, a multi-modal sensor system that tracks glucose
levels, ECGs, body temperature, and environmental factors
like air quality, humidity, and temperature was found to
improve illness diagnosis accuracy [92]. Another example is
the HuMAn system, which integrates LPWAN with multiple
body-worn sensors, such as accelerometers and gyroscopes,
placed at different positions on the body to recognize 21
complex daily activities at home [93]. This system improves
activity classification by incorporating context awareness
from Bluetooth beacons for location and environmental
sensors like humidity and temperature for room-specific
contexts.
Table 3 illustrates how integrating LoRaWAN technology

with various sensor modalities can overcome inherent limita-
tions, thereby enhancing their performance in HAR systems.
For instance, ambient sensors often face challenges due to
environmental variability, but LoRaWAN’s reliable signal
penetration improves data consistency. Similarly, body-worn
sensors benefit from LoRaWAN’s low power consumption,
which extends battery life and enhances user comfort by
reducing the need for frequent recharging.
In HAR using wearable sensors, the interaction between

the number of sensors, n, and the identification of a defined
set of activities is vital. A set of activities A is given by:

A = {a1, a2, . . . , ak}, (1)

where k is the number of activity types. For a sequence s
of deployed sensors:

s = {s1, s2, . . . , sn}, (2)
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TABLE 3. Assessing sensor modalities in LoRaWAN-integrated HAR systems: Limitations and LoRaWAN’s enhancement potentials.

where n denotes the number of wearable sensors, each
capturing different aspects of movement or physiological
signals. A model function f maps multidimensional sensor
data to the identified activity, determining the value of n.
The choice and configuration of sensors depend on the

complexity of the HAR task, which determines the required
number and types of sensors [94], [95]. Simple activities,
like walking, may require fewer sensors, whereas complex
activities, such as sports or dance, might need a more
extensive sensor array to capture detailed movements. In
HAR systems, ML methods, including classifiers and neural
networks, are often used to learn the mapping function f
from varied sensor inputs, allowing the system to recognize
and classify a wide range of activities. However, extensive
exploration in this area is beyond the scope of our research.

III. RESEARCH METHODOLOGY
A. REVIEW PROCESS
To understand LoRaWAN integration with HAR wearable
sensor systems, we conducted a review using the 27-item
PRISMA method. Our search included databases such as
Google Scholar, Science Direct, SpringerLink, IEEE Xplore,
MDPI, and Web of Science. The search employed keywords
like (‘LoRa’ OR ‘LoRaWAN’), (‘wearable sensor network’
OR ‘wearable device’ OR ‘remote monitoring’ OR ‘wireless
body area network’), and (‘human activity recognition’ OR
‘motion tracking’ OR ‘physical activity recognition’ OR
‘activity detection’ OR ‘gesture recognition’ OR ‘posture
recognition’ OR ‘context-aware sensing’ OR ‘wearable
computing’). This search strategy initially yielded 147 papers
focused on various aspects of HAR and LPWAN technolo-
gies, including LoRaWAN. In addition to the broader survey
review, we identified 48 recent implementations related to
LoRaWAN-integrated HAR systems.

B. SELECTION CRITERIA
From the 147 papers identified, we narrowed down to 8
key surveys that comprehensively covered the topic after

excluding irrelevant titles, duplicates, and papers need-
ing more technical depth. Similarly, from the 48 recent
implementations of LoRaWAN-integrated HAR systems,
we filtered out studies that were irrelevant, duplicates, or
lacking in technical detail and focused on 15 systems
that were most relevant to the current advancements in
the field. We also engaged with authors to clarify points
not explicitly detailed in their publications. This was
essential, as many studies focused on specific topics,
such as ML applications or general IoT solutions, with-
out thoroughly addressing the technical specifications and
architecture of LoRaWAN systems, which are central to our
study.

C. RELATED SURVEYS
While HAR using wearable sensors has been exten-
sively studied, there needs to be more literature on
incorporating LoRaWAN technology in this field, as
many evaluations overlook this integration. Some sur-
veys focus on other LPWANs, such as comparing Sigfox
and NB-IoT, but do not cover LoRaWAN for HAR
specifically [3], [10], [96]. Other works review IoT-based
wearables for health and smart cities, mentioning LPWANs
generally but not focusing on LoRaWAN’s use in HAR [97],
[98], [99], [101]. Additionally, some studies discuss sen-
sor modalities for HAR but omit remote monitoring
via LPWANs like LoRaWAN [58]. Table 4 presents a
focused examination of the most relevant surveys, addressing
their notable limitations and providing insights into how
these challenges have been managed or mitigated in our
review.
This chapter reviews the most relevant surveys on HAR

and wireless communication networks that connect end
devices to gateways and servers. These surveys contribute
to HAR research by addressing challenges such as accuracy,
reliability, scalability, and applicability. However, a key
research gap remains regarding the use of LoRaWAN tech-
nology in HAR systems, which is often overlooked. While
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TABLE 4. Overview and critical analysis of surveys on wearable HAR systems: Comparative insights on IoT protocols, sensor modalities, and LPWAN/LoRaWAN integration
challenges and opportunities.

some studies examine LPWANs like Sigfox and NB-IoT,
they do not provide a detailed analysis of LoRaWAN’s
role in wearable HAR. This review aims to fill this

gap by offering a comprehensive analysis of LoRaWAN’s
potential to enhance the efficiency and reliability of HAR
technologies.
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TABLE 5. A summary of technical design and operations in the recent implementations of LoRaWAN-based HAR systems.

IV. RESEARCH AND RECENT ADVANCES IN
LORAWAN-INTEGRATED HAR SYSTEMS
A. LORAWAN-INTEGRATED HAR SYSTEMS
This section explores recent research and advancements in
LoRaWAN-integrated HAR systems. Table 5 provides an
overview of recent implementations of LoRaWAN-integrated
HAR systems, detailing the monitored activities, sensor types,
hardware specifications, power sources, and data processing
methods. It includes applications such as fall detection, ADL
monitoring, and localization, demonstrating the variety of
sensor configurations and energy sources utilized.

1) BODY-WORN LORAWAN-INTEGRATED HAR SYSTEMS

In [96], a LoRaWAN-integrated wearable sensor node was
evaluated in two key areas: connectivity and the integra-
tion of TinyML models into the wearable device. This
device, equipped with an Arduino Uno microcontroller,
GPS, LoRaWAN module (RN2483) with a 2dBi antenna,
and MPU6050 accelerometer and gyroscope sensors, tested
communication via virtual serial ports and was powered by
a 2000 mAh power bank. The TinyML models, including

random forest (RF) and multi-layer perceptron (MLP)
models generated with Scikit-learn and converted to C
using emlearn, were integrated to assess the complexity of
algorithms operable on the wearable unit.
The LPWAN communications, tested on a university

campus, showed strong indoor and outdoor connectivity,
though some coverage issues occurred due to obstacles like
vegetation and buildings. The study highlights LoRaWAN’s
reliable connectivity for wearable devices in varied envi-
ronments and demonstrates TinyML’s potential to enhance
capabilities beyond basic monitoring. However, the limita-
tions in model accuracy and performance for specific tasks
were not evaluated.
A wearable emergency system was developed using

a regular shoe equipped with ML algorithms for foot
gesture recognition [86]. The prototype integrates two force
sensors positioned at the toe and heel, connected to an
ESP32 microcontroller and an RFM95 LoRa module, which
facilitates long-range communication. With a helical antenna,
the system can transmit alerts over distances of up to
600 meters, making it adaptable to various environments.
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This setup, powered by a small battery, achieves nearly
98% accuracy in detecting specific foot movements, such as
double taps at the toe or heel, during activities like walking
and running.
The study goes beyond a simple technical overview

to demonstrate the effectiveness of integrating ML into
wearable devices for emergency scenarios. It illustrates how
these systems can function independently and reliably across
different environments. The approach of using simple, off-
the-shelf components suggests that such wearable systems
could be quickly adopted, turning everyday items into critical
tools for emergency response combining discretion with
functionality.
In Japan, a study explored HAR using LoRaWAN technol-

ogy with basic sensor components, developing a prototype
featuring an Arduino microcontroller and accelerometers
to collect movement data [89]. The collected data was
wirelessly transmitted to a cloud platform via LoRaWAN,
valued for its long-range and low-power capabilities. By
analyzing features such as mean, variance, and magnitude,
the researchers classified activities into running, standing
still, and walking. The scholars compared the accuracy of
two ML methods, k-Nearest Neighbour (kNN) and Linear
Discriminant Analysis (LDA), in classifying human activities
based on transmitted data from the sensor components. The
kNN method achieved a higher accuracy of 80%, compared
to 73.3% for LDA. This study marks one of the initial
uses of LoRaWAN for HAR, demonstrating the feasibility
of utilizing accessible technology for practical applications.
This work extends beyond the prototype, showcasing a

trend towards affordable IoT solutions for activity monitor-
ing, particularly in healthcare. It highlights the potential of
integrating ML into cost-effective, low-maintenance systems,
encouraging future research aimed at making activity recog-
nition more accessible and practical. Such approaches align
with the increasing demand for intelligent, connected envi-
ronments that support safety and health monitoring through
efficient and user-friendly solutions.
In [90], the researchers developed a wearable system for

human posture detection (HPD) using LoRa technology,
leveraging its long-range and low-power capabilities for
smart city applications. The system comprises four modules:
a posture sensor module with accelerometer, gyroscope, and
magnetometer sensors integrated into clothing to collect
posture data; a wireless transmission module using LoRa
nodes and gateways for data transfer; a recognition module
that pre-processes data, extracts key features with Random
Forest, and reduces noise; and a user interface module that
displays the results.
This study demonstrates the potential of integrating

LoRa with multisensor data for effective posture detection,
highlighting a shift towards accessible and autonomous
health monitoring solutions in smart cities. The approach
exemplifies how low-cost IoT technologies can enhance
wearable systems, making them more practical for continu-
ous monitoring across different environments.

The system presented in [102] integrates fall and recov-
ery detection sensors into smart shoes, embedding three
force sensors to assess weight distribution and a 3-axis
accelerometer for measuring foot inclination. An Adafruit
Feather M0 board, equipped with an RFM95 LoRa radio,
facilitates the transmission of alerts to a network server via
a custom Raspberry Pi gateway. LoRa technology enables
long-range communication, which was enhanced through a
preliminary radio coverage study conducted in Ancona, Italy,
to map signal strength across different areas. Specific settings
were applied for transmitting fall and recovery messages,
with payload sizes of 14 and 18 bytes, respectively. The
network server handles message storage, notifications, and
the forwarding of alerts to caregivers.
The findings from this research highlight the practical

application of LoRa for wearable fall detection, demon-
strating how low-power, long-range communication can be
seamlessly integrated into everyday items like shoes. By
facilitating autonomous operation without dependency on
smartphones or close-range devices, the study contributes to
the development of more practical IoT solutions in health
monitoring. This direction supports broader adoption in
urban environments where reliability and user convenience
are essential.
In [12], a wearable device was developed for moni-

toring the physical activity of older people, featuring an
ATmega328P microcontroller, an LSM9DS1 accelerometer
from STMicroelectronics for motion data collection, and
an RN2483 LoRaWAN modem from Microchip for data
transmission. The device is powered by a small LiPo battery
that could last up to two days with continuous sampling
and hourly data transmissions. Enclosed in a compact
3D-printed case, the wearable was designed to be unobtrusive
and easily integrated into daily routines. The LoRaWAN
settings were carefully tuned to optimize both transmission
efficiency and energy consumption, ensuring reliable long-
range communication.
This work showcases the feasibility of incorporating

accessible components like the ATmega328P and LoRaWAN
technology into health monitoring wearables. It reflects
a shift toward developing scalable and low-maintenance
systems that offer continuous support while remaining unob-
trusive. By prioritizing minimalistic yet practical designs,
the research suggests future health solutions that integrate
smoothly into daily life, enhancing the autonomy and well-
being of elderly individuals.
The energy-efficient LoRa GPS tracker for dementia

patients in Hadwen et al. [103] is a wristband that includes
an accelerometer and magnetometer for motion sensing, a
microcontroller to manage operations, and a GPS module for
location tracking, all powered by a compact battery. A LoRa
module enables long-range data communication, allowing
location updates to be sent over several kilometers. The
device uses power-saving strategies to maximize battery life,
including efficient GPS duty cycling and low-power operation
modes for the sensors and communication modules.
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This work highlights the trend of integrating energy-
efficient, long-range communication in wearable devices
for health monitoring. By combining compact sensors with
LoRa technology, the study demonstrates the potential of
developing discreet, reliable trackers that support continuous
monitoring and improve patient safety in everyday settings.

2) HYBRID LORAWAN-INTEGRATED HAR SYSTEMS

In [46], a hybrid system was developed for tracking
elderly individuals indoors and outdoors using LoRaWAN
technology. The scholars proposed and tested a proof-of-
concept that focused on indoor localization accuracy and
communication latency. The system used motion sensors,
Global Navigation Satellite System (GNSS) for outdoor
tracking, and Ultra-Wideband (UWB) for precise indoor
positioning, all managed by an Atmega328P microcontroller
that sent localization data via LoRaWAN every minute. Tests
conducted at the University of Brescia showed sub-meter
accuracy indoors and low communication delays, demon-
strating its suitability for applications like fall detection in
elderly care.
This research exemplifies the integration of multiple local-

ization technologies with LoRaWAN to develop a cohesive
tracking solution for both indoor and outdoor environments.
With the inclusion of an IMU, the system could be further
enhanced to monitor movement patterns and detect falls. The
findings point towards the development of comprehensive
and adaptable monitoring systems that improve safety and
autonomy for the elderly, addressing gaps in current assisted
living technologies.
In their study [88], researchers developed a wearable

sensor network aimed at enhancing safety in outdoor work
environments. The system includes two key components: the
Health Node [104], which monitors physiological metrics
such as heart rate and body temperature using BLE within a
body area network, and the Safe Node [105], which measures
environmental factors like temperature, humidity, CO2, and
Ultraviolet (UV) levels. Data from both nodes is transmitted
over long distances via LoRa technology to a gateway
equipped with a Raspberry Pi. This gateway processes and
stores the data, detects emergencies and connects to a cloud
server using MQTT. The system also incorporates encryption
for secure data transfer and provides a Web-based app for
data visualization.
This study showcases an integrated IoT platform for simul-

taneous environmental and health monitoring, reflecting a
shift towards all-encompassing safety solutions in workplace
environments. By leveraging BLE for short-range communi-
cation and LoRa for long-range data transmission, the system
optimizes power efficiency while ensuring reliable, real-time
monitoring and improved safety management.
The authors of [91] developed a wearable emergency

response system utilizing LoRa technology for regions
lacking network coverage. The system includes smartwatches
equipped with accelerometers, gyroscopes, and PPG sensors
to detect health emergencies such as cardiac issues. When

an emergency is detected, the smartwatch uses BLE to
communicatewith an IoT device composed of a Pytrack sensor
shield (with GNSS GPS capabilities) and a LoPy 4 board with
a LoRa transceiver. This configuration enables the device to
broadcast GPS coordinates and alerts to other IoT devices
and rescue centers via LoRa. The design emphasizes energy
efficiency, allowing both the IoT device and smartwatches to
operate for several hours on small batteries.
This research demonstrates the effective integration of

wearable and IoT technologies to deliver reliable emergency
monitoring in remote areas. It highlights the advancement
of autonomous, low-power systems in health and safety
contexts. By combining smartwatches, BLE, and LoRa, the
system offers a robust solution for emergency response,
reinforcing the crucial role of IoT in enhancing personal
safety in challenging environments.
In [75], a LoRaWAN-based system was implemented to

monitor activities and track the location of individuals with
mild cognitive impairments (MCI). The system includes
wireless wearable sensors (WWS) based on the RAK5205
board, featuring a three-axis accelerometer for activity
tracking, an IR receiver for indoor localization, a GNSS
module for outdoor positioning, and an environmental sensor.
These components are managed by an ARM Cortex-M3
microcontroller powered by a 1000 mAh battery that lasts
24 hours. Additionally, room-level IR beacons using the
ESP32-PICO-D4 SoC emit signals detected by the WWS
to determine the user’s location indoors. A Lorix-One
LoRaWAN gateway relays data to the cloud for processing
and visualization, with real-time alerts sent to caregivers via
the Telegram app.
This system exemplifies the trend of integrating multiple

sensory and localization technologies into a cohesive solution
for monitoring vulnerable individuals. By combining long-
range LoRaWAN communication with accurate indoor and
outdoor tracking, the approach supports independent living.
It also enhances caregiver support, reflecting the broader
move towards comprehensive and adaptable IoT-based health
monitoring solutions.
In [106], a health monitoring and fall detection system was

developed using a multi-layer architecture to enhance health-
care, especially in remote areas. The system’s sensor layer
includes wearable devices with an MPU9250 accelerometer,
gyroscope, and magnetometer to collect movement and
orientation data. The smart edge gateway, built on a
Raspberry Pi 3 with a LoRa shield, processes this data using
a Recurrent Neural Network (RNN) with Long Short-Term
Memory (LSTM) layers, which are designed to handle time-
sequenced data effectively, improving the accuracy of fall
detection. Data is transmitted in compact 10-byte packets
to fog layer access points, which process and forward the
information to cloud servers. The application layer provides
real-time alerts to caregivers via a Web interface built with
Django and Apache on CentOS.
This study highlights the effectiveness of RNNs with

LSTM layers for processing time-dependent data locally,
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FIGURE 4. Illustration of a LoRaWAN-Integrated Human Activity Recognition (HAR) System: Wearable sensors collect activity data, which is transmitted via gateway(s)
through the LoRaWAN technology network to servers and an IoT platform for processing and analysis.

enabling accurate real-time fall detection. By integrating
edge and fog computing with LoRa technology, the system
reduces dependence on constant cloud connectivity and
delivers reliable health monitoring across broad areas. This
approach reflects a growing trend towards decentralized,
AI-powered healthcare solutions that can operate effectively
in remote and underserved regions, enhancing support for
both patients and caregivers.
In [107], a HAR system was developed using a wearable

wristband powered by a lithium-ion battery. The device
combines a sensor module with a gyroscope and accelerom-
eter, integrated into an STM32 microcontroller, along with
a LoRa module for wireless communication. A capsule
framework was used to track activities like walking, sitting,
and jogging, improving the accuracy of recognizing these
movements to 95.2%. This method performed better than
traditional models such as Convolutional Neural Networks
(CNN) and LSTM networks, demonstrating its effectiveness
in recognizing daily activities.
This work illustrates the advantage of capsule networks in

wearable health monitoring, particularly for real-time activ-
ity recognition. By capturing spatial relationships between
movements, the system enhances precision and reliability,
offering a compelling alternative to conventional methods.
This approach reflects a growing trend towards integrating
advanced AI techniques with low-power communication
technologies in wearables, making them more practical for
everyday health and safety applications.

3) OBJECT-MOUNTED LORAWAN-INTEGRATED HAR
SYSTEMS

In [85], researchers developed a system to detect falls
on construction sites using CNNs with acceleration data
collected from a smartphone’s built-in sensors. The study
aimed to address limitations in traditional methods, such
as interference from wearable sensors and difficulties in

handling undefined action classes. A 3-axis accelerometer
from an iPhone-7 captured movement data from scaffolding,
which was processed by a CNN algorithm to identify fall-
related actions. The data was transmitted via Bluetooth to a
server and then relayed using LoRa technology. Four distinct
CNN architectures were proposed, focusing on identifying
precursors to falls and effectively managing unseen action
classes, achieving high recognition accuracy rates between
93-97%.
This study demonstrates the potential of using object-

mounted, structure-based sensors combined with CNNs
for real-time activity monitoring on construction sites. By
leveraging the spatial patterns captured from scaffolding
accelerations, the approach offers a non-invasive, privacy-
conscious solution that surpasses traditional models in
handling undefined classes. This reflects a broader trend
towards using advanced AI techniques to enhance safety
monitoring in challenging environments, providing more
reliable and adaptable solutions for accident prevention.

B. ANALYSIS AND DISCUSSION
1) TYPICAL STATE-OF-THE-ART ARCHITECTURE OF
LORAWAN-INTEGRATED HAR SYSTEMS

A typical state-of-the-art LoRaWAN-integrated HAR system
architecture is illustrated in Fig. 4. Each segment of the
architecture is discussed in detail below.
Sensor Modalities and Typical Sensors: The sensors are

categorized as body-worn, object-based, and hybrid. No
system deploying purely ambient sensors was found in the
reviewed literature. However, a typical application in a hybrid
sensor system was found. A summary of the rest of the sensor
modalities is presented in Table 5. Body-worn wearables
incorporating IMU sensors such as accelerometers have been
used in [12], [89], [90], [102], [103], [107] to acquire
movement data for HAR. Others include the gyroscopes
and magnetometers. Also, force sensors [86], [102] have
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TABLE 6. A summary of LoRaWAN transmission parameters.

102

been used for recognition of ADL and gestures, as well as
for fall and recovery in LoRaWAN-integrated systems for
HAR. Object sensors, making use of an IMU integrated into
devices like a smartphone [85], monitoring interactions and
usage patterns, have been used for fall detection. Ambient
sensors, placed in the environment, assess conditions like IR
emissions [75], light, temperature, or movement, contributing
to contextual data. Hybrid sensors combine all these aspects,
offering a comprehensive overview by correlating data from
multiple sources. These include health information from
sensors such as PPGs, as in [88] and EEG, ECG, EMG, and
BP in the system of [106] to enhance accuracy in activity
recognition by primary sensors and health monitoring with
applications ranging from fall detection to general health
monitoring.
LoRaWAN Transmission Parameters: In most

LoRaWAN-integrated HAR systems, the selection parame-
ters like SF, CR, and BW are pivotal. SF can range from 7 to
12, with higher values increasing the range and decreasing
the data rate. A summary of the choice of these parameters
is presented in Table 6. A CR option of 4/5 in the vast
majority of the reviewed systems is deployed to enhance
data integrity, which is vital for accurate health data for
users. Also, CR is often set to 4/5 for a balance between
error correction and payload size. Equally, the BW typically
varies from 125 kHz to 500 kHz, affecting data throughput
and power usage.
Common combinations for LoRaWAN-integrated HAR

systems include SF7/BW125kHz [88], for high data
rate and low power consumption in urban settings;
SF10/BW125kHz [75], suitable for balanced performance in
semi-urban or suburban areas where a compromise between
data rate and range is required; and SF12/BW125kHz [91],
for long-range rural monitoring with lower data rates.
These selections cater to specific deployment scenarios. For
instance, a high SF and a low BW for extended coverage
in remote activity monitoring versus a lower SF and a
higher BW for dense urban environments where higher data
throughput and reduced latency are needed.
The payload transmission intervals range from one

second [85], [89] for real-time health alerts to one
hour [46], [88] for long-term monitoring. For event-triggered
options, implementations were done in [86], [91], [102],
[106] for specific condition applications. Shorter intervals
are critical for immediate response in high-risk scenarios
but consume more power and bandwidth, while longer

FIGURE 5. Key applications of LoRaWAN-Integrated HAR systems, linked to the
main benefits of LoRaWAN as discussed in the literature.

intervals conserve energy and are ideal for non-urgent data.
Event-triggered transmissions ensure efficiency by sending
data only when necessary. The choice of interval balances
the need for timely information with network and energy
constraints, tailoring the system to the specific requirements
of the application.
Data Handling: In LoRaWAN-integrated wearable HAR

systems, processing can be performed at the end device [106]
for real-time applications like emergency fall detection,
requiring immediate local response. In this case, sampling
rates like 20 Hz [12] up to 50 Hz [86] are used for acute data
analysis. For less time-sensitive applications, such as daily
activity monitoring, data can be processed after transmission,
necessitating lower sampling rates such as 10 Hz [75] to
conserve energy and bandwidth. This strategy balances the
need for detailed data with the limitations of power and
network capacity.
LoRaWAN Range of Communication: From the

reviewed wearable HAR systems integrated with LoRaWAN
technology, a significant variation in communication ranges
has been documented. Researchers have observed that these
systems can maintain connectivity over distances ranging
from several meters [81], [85], [88], [107] to several
kilometers in the range of 4 km [102]. This disparity in range
is believed to be influenced by several factors, including
the experimental test environment, such as urban or rural
areas. Generally, the presence of physical barriers such as
buildings and trees and specific LoRaWAN configurations
like frequency, bandwidth, and power settings also play a
key role. Researchers have noted that LoRaWAN-equipped
wearable HAR systems have the potential to meet a variety
of requirements in wearable HAR system deployments, as
compared to other technologies.

2) MAJOR APPLICATIONS

The categorization of applications shown in Fig. 5 reflects
the mostly implemented LoRaWAN-integrated HAR systems
as observed in recent studies. Some systems focused on ADL
alone, while others used ADL data in healthcare or safety
applications. Although ADL can cut across categories, the
classification is based on the primary focus of each system’s
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TABLE 7. Principal justifications for choosing LoRaWAN in the specific application
areas of HAR systems over other LPWANs (Sigfox, Ingenu-RPMA, LTE-M, and NB-IoT)
as identified from the reviewed literature.

implementation, demonstrating the versatility of LoRaWAN
in various contexts as justified in Table 7.
ADL: LoRaWAN-integrated wearables, equipped with

sensors like accelerometers, magnetometers, and gyroscopes,
are widely used for monitoring ADL [86], [89], [90]. These
wearables capture movement data essential for recognizing
activities such as walking, running, climbing stairs, and sit-
ting. LoRaWAN’s energy efficiency extends the end device’s
lifespan, supporting reliable long-term monitoring across
various settings. Its wide coverage and cost-effectiveness
make it scalable for extended monitoring in elderly care
and lifestyle applications. Moreover, LoRaWAN enables
efficient, long-range data transmission, making it ideal for
remote monitoring applications in personalized healthcare,
elderly care, and lifestyle management. By using ML
algorithms, the collected data is analyzed to classify activities
and provide insights into the wearer’s physical well-being,
facilitating timely health interventions. Recent advancements
have extended the application of these systems across diverse
remote settings.
Healthcare: In healthcare, LoRaWAN-integrated HAR

systems utilize various sensors to enhance patient moni-
toring and care. These include bio-potential sensors like
EEG, ECG, and EMG for vital signs and environmental
sensors to detect conditions that could affect health. IMU
sensors also track physical activity, providing comprehensive
health monitoring [106]. Additional biomedical sensors, such
as photoplethysmographs (PPG) [88] and blood pressure
monitors, are often incorporated. LoRaWAN’s real-time
monitoring capabilities enable swift responses to health
emergencies. Its scalability supports a broad range of
healthcare devices, and reliable communication enhances
safety protocols in remote monitoring scenarios. This timely

transmission of data collected via multiple sensor modali-
ties to healthcare providers facilitates early diagnosis and
intervention in patient care.
Safety: LoRaWAN-integrated HAR systems significantly

contribute to safety, particularly in fall detection and
environmental monitoring. These systems utilize inertial
and force sensors to detect falls, especially among the
elderly, by analyzing factors like body posture, speed,
and angular velocity [91]. Advanced algorithms, including
threshold-based methods and ML models such as CNN [85],
enhance detection accuracy and reduce false positives.
LoRaWAN’s robust communication ensures accurate fall
detection and environmental monitoring. Its open standard
promotes interoperability among safety devices, improving
accessibility and affordability of comprehensive safety solu-
tions. Additionally, wearables equipped with environmental
sensors monitor conditions such as temperature, humidity,
and CO2 levels, providing alerts to hazardous situations
through LoRaWAN transmission [35], [88]. These systems
play a crucial role in mitigating risks and enhancing personal
and public safety across various environments.
Tracking and Localization: For tracking and localiza-

tion, LoRaWAN-integrated HAR systems employ a range
of sensors and technologies to determine the position
and movements of users. GPS [103] and GNSS [46]
are commonly used for outdoor tracking, while infrared
(IR) [75] and ultra-wideband (UWB) [46] technologies
are employed indoors. LoRaWAN’s robust infrastructure
supports accurate tracking and localization without compro-
mising performance. Its extensive coverage and cost-effective
implementation foster widespread deployment, enhancing
safety and security in various settings. These systems monitor
a broad spectrum of activities, from routine movements to
specific tasks, providing accurate location data that is crucial
for applications such as personal fitness, sports analytics,
and the monitoring of vulnerable individuals like the elderly
or those with cognitive impairments.

V. COMMON CHALLENGES AND FUTURE RESEARCH
DIRECTIONS
This section examines the key challenges of integrating
LoRaWAN in wearable sensor networks for HAR, as high-
lighted in recent studies. These include device wearability,
energy management, data security, and network coverage, as
well as providing a detailed analysis, proposed solutions, and
future research directions. The insights aim to advance the
design and optimization of next-generation wearable systems
for enhanced functionality and user experience.

A. END DEVICES' WEARABILITY
Improving wearability is a priority for LoRaWAN-integrated
wearable sensor networks in remote HAR. The goal is to
design lightweight, comfortable, and unobtrusive devices,
allowing for long-term use without discomfort. Advances
in material science have enabled the creation of flexible,
breathable fabrics with embedded sensors, enhancing user
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comfort [108]. Most reviewed systems (93%) are body-worn,
reflecting a preference for this approach despite available
alternatives.
However, challenges persist as many devices remain bulky

and intrusive, with sizes ranging from 36 mm × 26 mm
× 10 mm [12] to 138.3 mm × 67.1 mm × 7.1 mm [85].
Achieving a balance among comfort, aesthetics, and sen-
sor performance without compromising usability is still a
significant design challenge [109].

Future research should focus on further miniaturization,
innovative materials, and integrating sensors into everyday
items like clothing or accessories [110]. A helpful approach
could be to develop a wearability score W, defined by:

W = 1

1 + e−a(s−t)
, (3)

where s is the device size, a is the adaptability factor (how
well the device can be modified for comfort), and t is
the target comfort threshold size. This formula provides a
wearability score between 0 and 1, helping designers balance
miniaturization with comfort to guide the creation of next-
generation wearables.
Furthermore, exploring non-body-worn (object-mounted)

sensors could broaden the application and enhance the
accuracy of HAR systems, offering a more comprehensive
understanding of user activities. Future advancements should
optimize these integrations to meet user expectations for
functionality and comfort.

B. ENERGY CONSUMPTION AND MANAGEMENT
Recent advancements in LoRaWAN sensor networks for
HAR have targeted energy efficiency, primarily through
low-power algorithms that reduce consumption during data
processing and transmission [111]. These improvements aim
to extend battery life, allowing devices to operate longer
without frequent recharging.
Energy consumption, however, remains a key challenge

due to the continuous operation of sensors and frequent data
transmissions needed for accurate HAR. Integrating tech-
nologies like Bluetooth [35], [85], [106] further increases
power demands because of added hardware and commu-
nication exchanges. Current battery and energy harvesting
technologies still need to be improved for sustained opera-
tion, with only 7% of systems reviewed employing harvesting
methods.
Future efforts should focus on advanced energy harvesting

techniques, such as utilizing solar, thermal, or kinetic
energy [112], [113] alongside efficient power management
algorithms that adjust sensor activities based on con-
text [114], such as adaptive sampling rates, to significantly
improve battery longevity. As food for thought, for instance,
power consumed during data transmission, Ptx, and process-
ing, Pproc, can be modeled as:

Ptx = Pidle + �P · ttx (4)

and

Pproc = Pidle + �Pproc · tproc. (5)

Pidle is the power consumption in idle mode, �P and �Pproc
represent the incremental power used during transmission
and processing, while ttx and tproc are the durations of trans-
mission and processing, respectively. To minimize energy
consumption, an objective function can be constructed to
find the optimal balance between transmission frequency and
power used during idle and active states [115], [116]. The
optimization problem can be stated as:

min
ttx,tproc

E
(
ttx, tproc

) = min
ttx,tproc

(
Ptx · ttx + Pproc · tproc

)
, (6)

subject to constraints on data integrity and system
performance. The solution to this problem will dictate the
optimal intervals for data transmission and the best strategies
for processing, balancing energy efficiency with operational
requirements.

C. PAYLOAD SIZE, DATA RATE, AND ADAPTIVE DATA
RATE (ADR)
LoRaWAN offers valuable capabilities for IoT, but its limited
bandwidth creates challenges, especially with payload size,
data rate, and transmission delays, impacting wearable
systems for remote HAR [117]. Optimizing the interaction
between payload size, data rate, and ADR is essential to
improve data transmission in constrained settings [116].

LoRaWAN payloads range from 51 to 242 bytes [47],
requiring efficient encoding to maximize the information
content. We introduce the concept of information density,
δ(p):

δ(p) = H(p)

p
, (7)

where H(p) is the Shannon entropy of payload p, rep-
resenting the average information per byte. Future work
should focus on maximizing δ(p) with advanced encoding
methods that increase informational value. Additionally,
using algorithms that handle compressed or reduced datasets
can make better use of limited payloads [118], ensuring key
data is transmitted effectively.
LoRaWAN’s data rates from 0.3 to 27 kbps limit data

transfer capacity [119], posing challenges for HAR applica-
tions that need frequent sensor data sampling. To address
this, on-device preprocessing and feature extraction can
reduce the need for extensive data transmissions [120], such
as by sending summary statistics instead of raw data. This
can be measured by sampling efficiency, η:

η = Ie
Dt

, (8)

where Ie is the essential information extracted, and Dt is
the data transmitted. Future research should maximize η

by refining on-device processing to reduce transmission
volumes while retaining crucial information.
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The ADR mechanism in LoRaWAN adjusts data rate, air-
time, and energy use based on network conditions, balancing
performance and efficiency. However, ADR can introduce
variability in transmission [116], affecting HAR accuracy.
HAR algorithms must be resilient to these fluctuations to
maintain accuracy. A utility function, U(d, a) , can help
evaluate ADR adjustments:

U(d, a) = α · log(1 + d) − β · ϕ(a), (9)

where d is the data rate, a represents adaptability (variability
in data rate), α and β are weighting factors, and ϕ(a)
penalizes the impact of adaptability on data consistency.
Future efforts should refine this function to balance better
data rate improvements with the need for stable transmis-
sion, supporting robust HAR performance across varying
conditions.

D. NUMBER OF SENSORS
The integration of multiple sensors, such as accelerometers,
gyroscopes, and heart rate monitors, has advanced signifi-
cantly, allowing systems to provide detailed insights into user
behavior and health status [121], [122]. Recent developments
have focused on optimizing sensor placement and fusion
algorithms to improve data accuracy and reliability.
A primary challenge is determining the optimal number of

sensors to capture accurate data without overwhelming the
system or user. For example, [35] used an accelerometer, a
magnetometer, and environmental sensors for fall detection,
while [88] added PPG and body temperature sensors for
safety monitoring, highlighting potential redundancies. This
highlights the importance of careful sensor selection to
enhance efficiency without over-complicating the system.
Excessive sensors can increase power consumption, data
redundancy, and user discomfort. In contrast, inadequate
sensors can pose a substantial risk to activity recognition
accuracy.
A mathematical model can be formulated to optimize the

number of sensors. Let S be the set of all possible sensors,
and f (S) represent the functionality or coverage provided.
The objective is to minimize sensor count while maximizing
functionality:

min |S| such that f (S) ≥ τ, (10)

where τ is the desired threshold of activity recognition
accuracy. This optimization can be approached using com-
binatorial optimization and integer programming techniques.
Future research should develop intelligent algorithms that

maximize information extraction from minimal sensor inputs
and dynamically adjust the number and type of sensors
based on the monitored activity [123], [124]. This adaptive
sensor management approach balances accuracy, power
consumption, and user comfort. Leveraging ML and context-
aware computing, future systems could self-configure to
operate efficiently in various scenarios, using the fewest
sensors necessary while maintaining high accuracy.

E. DATA PROCESSING
Edge processing in LoRaWAN-integrated wearable sen-
sor networks has been underutilized due to the resource
constraints of IoT devices. This leads to over-reliance
on cloud-based processing for data analysis [125]. This
approach introduces latency from data transmission and
requires continuous network connectivity, which can reduce
system responsiveness and efficiency.
Over 60% of surveyed systems favor remote processing,

yet this trend toward cloud dependency misses the benefits
of edge processing, such as reduced data transmission,
energy savings, and faster decision-making. Processing data
locally or at the network edge can significantly enhance the
performance of wearable sensor networks [123].

To quantify the advantages of edge computing, we can
model the performance improvement (�P) as:

�P = (�L× CL) + (�E × CE). (11)

where �L = Lcloud − Ledge measures latency reduction,
with Lcloud and Ledge being latencies for cloud and edge
processing, respectively. Similarly, �E = Etrans − Eedge
measures energy savings, where Etrans is the energy for
cloud transmission and Eedge is for edge processing. The
coefficients CL and CE reflect the relative importance
of latency reduction and energy savings in the specific
application context. A positive �P indicates that edge
computing provides net gains in efficiency by reducing both
latency and energy consumption.
Future research should prioritize developing energy-

efficient edge computing solutions such as those proposed
in [126], [127] for wearable devices to decrease cloud
dependence and improve autonomy [123]. This will involve
innovations in algorithms and hardware design to maximize
the benefits of near-device processing, ultimately boost-
ing the efficiency and responsiveness of wearable sensor
networks.

F. RANGE OF COMMUNICATION
Achieving reliable long-range coverage is crucial for
LoRaWAN-integrated wearable networks, especially in
remote areas where the technology is most beneficial.
However, physical and environmental obstacles can degrade
signal strength and reliability.
Although LoRaWAN can have long-range coverage,

practical deployments often need to be revised. Studies
in [85], [88], [107] have shown that environmental factors,
network congestion, or sub-optimal device configurations
can limit LoRaWAN range to less than 1 kilometer. This
susceptibility poses significant concerns for sub-optimal
HAR system performance.
To improve coverage, future efforts should optimize

network infrastructure, such as strategic gateway place-
ment, enhancing device hardware, and developing adaptive
networking protocols [111], that adjust to environmental con-
ditions and network loads. To model and optimize network
performance, we propose three fundamental approaches:
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• Signal Attenuation Model: Signal attenuation due to
environmental factors is critical for long-range commu-
nication, outdoors as in the case of [54] and indoors.
For an outdoor environment, the received power at a
distance d can be modeled as:

Pr(d) = Pt − 10 · n · log10(d) − Lenv, (12)

where Pr(d) is the received power, Pt is the transmitted
power, n is the path loss exponent (varies by environ-
ment), and Lenv accounts for additional losses due to
environmental factors such as temperature, humidity,
barometric pressure, and other conditions. For indoor
environments, modified and refined equations should
account for the attenuation caused by specific factors
such as wall composition, the presence of electronic
devices, and various household materials. These adjust-
ments ensure a more accurate representation of signal
degradation in realistic indoor settings.

• Optimization of Gateway Placement: Optimizing gate-
way locations maximizes coverage and minimizes
costs [128], [129]. This can be formulated as:

max{xi,yi}

(
k⋃

i=1

Ai

)

subject to k ≤ K, (13)

where {xi, yi} are the coordinates of each gateway, Ai is
the area covered by gateway i, k is the current number
of gateways, and K is the maximum allowed due to
constraints.

• Enhanced ADR and Power Adjustment Model: An
enhanced ADR model adjusts both data rate and trans-
mission power dynamically [130], based on distance
and real-time conditions:

Pt(d) = min
(
Pmax,Pbase + 10 · n · log10(d) + Ladapt

)
,

(14)

where Pt(d) is the transmission power, Pmax is the
maximum permitted power, Pbase is the base power at
minimum distance, and Ladapt adjusts based on real-time
environmental and network data.

These models provide a framework for enhancing the
range and reliability of LoRaWAN-integrated wearable
networks, especially in complex environments. Future
research should continue to refine approaches such as those
in [111] to maximize network performance in wearables.

G. DATA SECURITY
Recent advancements in LoRa and LoRaWAN-integrated
wearable sensor networks have focused on enhancing data
security through robust encryption protocols and secure
authentication mechanisms. LoRaWAN provides strong
security features like unique network keys for secure com-
munication and application keys for end-to-end encryption.
However, security challenges persist, especially due to the

distinction between LoRa (physical layer) and LoRaWAN

(network protocol). While LoRaWAN includes built-in secu-
rity protocols, LoRa lacks these and relies on the application
layer, creating vulnerabilities when used alone for simpler or
low-power applications, as seen in some systems [90], [91],
[103], [106]. Wearable devices collecting sensitive data are
particularly at risk.
Future research should enhance both hardware and soft-

ware security, particularly for LoRa-only systems. Key
areas include developing lightweight encryption algo-
rithms suitable for low-power devices, and secure, efficient
key management and authentication methods tailored for
scalable, mobile wearable networks [131]. Additionally,
exploring blockchain technology [132], could provide decen-
tralized solutions to boost data integrity and privacy,
regardless of whether LoRa or LoRaWAN is used.
To address these security concerns, we propose a

Streamlined Unified Security Model (SUM) to assess overall
security effectiveness (OSE) against computational and
energy overhead:

OSE = α · E + β · T + γ · A+ δ · B, (15)

where E is encryption efficiency (energy consumption and
computational overhead), T is key management efficiency
(resource usage for key operations), A is authentication
effectiveness (robustness and speed), and B is blockchain
efficiency (transaction processing and data integrity). The
coefficients α, β, γ, δ adjust the impact of each component
based on specific needs.
This model helps evaluate the impact of technology

changes on security, guide investments to improve security
(e.g., better encryption or new authentication), and compare
security configurations to find the best balance between
security and performance.

VI. STUDY LIMITATIONS
This paper investigates the integration of LoRaWAN tech-
nology with HAR systems, focusing on wearable sensors.
While a brief comparison of other LPWAN technologies
is provided, the emphasis is on LoRaWAN due to its
relative suitability in HAR applications. The adequacy of
LoRaWAN in wearable HAR is driven by the protocols
distinct advantages in long-range communication, low power
consumption, and scalability, which are essential for practical
deployment.
The paper offers a focused review of HAR techniques

and wearable sensors, particularly those integrated with
LoRaWAN, to gain a deep understanding of current appli-
cations. Thus, we analyze the design and performance
of existing LoRaWAN-integrated HAR systems, identifying
critical technical challenges and proposing potential solu-
tions. Our analysis is limited to academic systems rather than
commercial ones due to the accessibility of detailed technical
data and the ability to assess and compare the underlying
technologies objectively.
Although this review does not include experimental work,

some related experiments are planned for future studies. The
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presented insights and recommendations aim to orient future
research and developments towards addressing identified
challenges and optimizing the effectiveness of LoRaWAN-
based HAR systems.

VII. CONCLUSION AND FUTURE OUTLOOK
A. SUMMARY OF FINDINGS
1) RQ1: PRACTICAL APPLICATIONS OF
LORAWAN-INTEGRATED WEARABLE SENSORS IN HAR

LoRaWAN technology is well-suited for HAR using wear-
able sensors due to its low power consumption, long-range
communication, scalability, and secure data transmission.
It integrates seamlessly with sensors like accelerometers,
gyroscopes, magnetometers, and environmental sensors for
diverse applications in healthcare, elderly care, sports,
and safety monitoring. LoRaWAN-based systems excel in
monitoring ADL, fall detection, and real-time emergency
response, particularly in remote settings where battery effi-
ciency and connectivity are vital. Devices can be configured
as Class A, B, or C to optimize power use, data latency,
or responsiveness. LoRaWAN's capacity to support various
sensor setups, including body-worn, object-mounted, and
ambient sensors, makes it highly versatile for HAR. At the
same time, its robust encryption ensures data security in
sensitive applications.

2) RQ2: OPTIMIZATION OF LORAWAN PARAMETERS
FOR HAR SYSTEMS

Optimizing LoRaWAN parameters like SF, BW, and CR
enhances HAR system performance. Higher SF values extend
range but lower data rates, suitable for remote areas, while
lower SF values are ideal for urban settings requiring
high data throughput. Adjusting BW between 125 kHz and
500 kHz balances power use and data rate, and a CR of
4/5 ensures data reliability without compromising payload
efficiency. Combining multiple sensor types and processing
data at the edge reduces energy use and minimizes network
congestion. Effective parameter tuning enables adaptable,
efficient HAR systems across diverse environments, from
real-time alerts to routine health monitoring.

3) RQ3: CHALLENGES AND OPPORTUNITIES IN
LORAWAN-BASED HAR SYSTEMS

Implementing LoRaWAN for wearable HAR systems
involves challenges like enhancing wearability, managing
energy use, optimizing data rates, and ensuring secure data
transmission. Sensors must be lightweight and comfortable,
requiring advances in materials and miniaturization. Energy
efficiency is vital due to the need for continuous opera-
tion, pushing for low-power designs and energy harvesting
methods. Data security is crucial, especially in healthcare,
necessitating robust encryption. Despite these challenges,
LoRaWAN offers significant opportunities with its flexibility,
low cost, wide coverage, and scalability, making it ideal
for large-scale deployments in health monitoring, safety, and

smart environments. Future research should focus on improv-
ing sensor integration, refining network configurations, and
using AI for more innovative data processing, paving the
way for reliable, secure, and efficient HAR solutions.

B. FUTURE DIRECTIONS SUMMARY
Future research in LoRaWAN-based HAR systems should
aim to integrate advanced wearable sensors that improve
comfort, energy efficiency, and data security for diverse
applications as follows:

• End devices should be designed to be lightweight,
flexible, and miniaturized to ensure comfort during
prolonged use.

• Energy management has to be optimized through low-
power algorithms, adaptive transmission settings, and
energy harvesting techniques to extend battery life
without compromising performance.

• LoRaWAN settings, such as the SF and BW, should be
dynamically adjusted to reduce network congestion and
enhance data reliability.

• The number of sensors should be carefully balanced
to ensure high data accuracy while minimizing system
complexity and power consumption.

• ML at the edge should be leveraged to improve data
processing efficiency, reduce latency, and enable real-
time applications such as health monitoring.

• Improving long-range communication capabilities is
crucial for effectively operating wearable networks in
remote and varied environments.

• Strong encryption and security protocols are essential
to protect sensitive health and activity data from cyber
threats.

Overall, the ultimate goal is to develop adaptable and
intelligent LoRaWAN-integrated HAR systems that function
efficiently across diverse settings, from healthcare environ-
ments to smart cities.

C. CONCLUSION
This review highlights the transformative impact of
LoRaWAN-integrated wearable sensor networks on remote
Human Activity Recognition (HAR). By enabling long-
range data transmission, improving power efficiency, and
supporting diverse deployments, LoRaWAN is advancing
applications in healthcare, elderly care, fitness, and safety,
providing detailed insights into human activities and health.
However, challenges such as wearability, energy efficiency,
data rate limitations, and security must be addressed for
broader adoption. Future research should focus on devel-
oping user-friendly, energy-efficient devices with advanced
data processing and secure protocols to meet user needs
and expectations. Continued innovation in sensor technology,
ML, and IoT integration, supported by collaboration between
academia and industry, will further enhance HAR systems,
leading to better health outcomes, safer environments, and
an improved quality of life.
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APPENDIX
ABBREVIATIONS AND ACRONYMS
Abbreviations Description
ADR Adaptive Data Rate
ADL Activities of Daily Living
AES Advanced Encryption Standard
AS Application Server
BLE Bluetooth Low Energy
BW Bandwidth
CNN Convolutional Neural Network
CR Coding Rate
ECG Electrocardiograph
EEG Electroencephalograph
EN End Device
EMG Electromyograph
GNSS Global Navigation Satellite System
GPS Global Positioning System
HAR Human Activity Recognition
IMU Inertia Measurement Unit
IoT Internet of Things
IR Infrared Sensor
ISM Industrial, Scientific and Medical
kNN k-Nearest Neighbour
LDA Linear Discriminant Analysis
LoRa Long Range
LoRaWAN Long Range Wide Area Network
LPWAN Low-Power Wide Area Network
LSTM Long Short-term Memory
LTE-M Long-Term Evolution Machine Type

Communication
MCU Microcontroller Unit
MQTT Message Queuing Telemetry Transport
NB-IoT Narrowband-Internet of Things
NS Network Server
PPG Photoplethysmograph
RF Radio Frequency
RFID Radio-Frequency Identification
SF Spreading Factor
TinyML Tiny Machine Learning
UWB Ultra Wideband
WBAN Wireless Body Area Networks
WWS Wireless Wearable Sensors
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