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Abstract
In affective computing (AC) field studies it is impossible to
obtain an objective ground truth. Hence, self-reports in form
of ecological momentary assessments (EMAs) are
frequently used in lieu of ground truth. Based on four
paradigms, we formulate practical guidelines to increase the
accuracy of labels generated via EMAs. In addition, we
detail how these guidelines were implemented in a recent
AC field study of ours. During our field study, 1081 EMAs
were collected from 10 subjects over a duration of 148 days.
Based on these EMAs, we perform a qualitative analysis of
the effectiveness of our proposed guidelines. Furthermore,
we present insights and lessons learned from the field study.

Introduction and Related work
In order to build holistic user models, the reliable detection
of affective states in everyday life is key. Hence, there has
been a focus shift from lab to field studies in the affective
computing (AC) community. The common approach to AC is
data-driven: Given some sort of input data (e.g.
physiological signals), machine learning models are trained
to assess the affective state of a person. This procedure
requires high quality labels. However, gathering labels in
unconstrained environments is challenging and relies on
self-reports filed by the subjects. Hence, the question arises
how paramount label quality can be reached and evaluated
in AC field studies.



From a technical point of view, smartphones [4, 5, 8, 17]
offer an ideal platform to collect data and labels in the wild.
However, in field studies no objective ground truth (e.g.
condition in a study protocol) is available. Hence, AC
studies in the wild rely solely on self-reports of the
participants and these self-reports have to be used in lieu of
(an objective) ground truth. These self-reports are often
gathered via ecological momentary assessments (EMAs)
[13], a method to assess the momentary affective state of a
person in it’s natural environment using a questionnaire.
Table 1 presents AC studies recently conducted in the wild
relying on EMAs. Most of these studies focus on stress
detection [4, 6, 8]. This is due to the severe health
implications of stress (e.g. increased risk of cardiovascular
diseases). However, emotions [5] and mood [11, 17] were
targeted in AC field studies as well.

Author year Aim

Muaremi [8] 2013 S
Hovsepian [6] 2015 S
Gjoreski [4] 2016 S

Healey [5] 2010 E
Sano [11] 2015 M
Zenonos [17] 2016 M

Table 1: Overview over recent AC
field studies. Abbreviations: stress
(S), emotion (E), mood (M).

Figure 1: Valence-Arousal
Self-Assessment Mannequins
(SAMs [7]).

The questionnaires employed in AC field studies are often
shortened versions of well-established psychological
questionnaires. In the domain of stress recognition, the
Positive and Negative Affect Schedule (PANAS [16]), the
Perceived Stress Score (PSS [2]), and the State-Trait
Anxiety Inventory (STAI [14]) have been used for instance
[4, 6, 8]. For emotion and mood detection, Healey et al. [5]
and Zenonos et al. [17] used the smartphone apps
MoodMap and HealthyOffice, respectively.
As outlined above, the number of AC studies conducted in
the wild is increasing. However, the ways these studies
have been conducted are diverse and no ’best practice’
guidelines are available. Therefore, we address this
shortcoming in this paper. Our contributions are twofold:

• We provide practical guidelines to AC field studies,
with the goal to generate frequent and high quality
affective labels via EMAs.

• We describe how these guidelines were implemented
in a recent AC field study of ours. Further, we present
our insights and lessons learned based on this study.

Everyday Life Affective Data
Currently, we are conducting an affective computing (AC)
field study, with the goal to gather physiological, context,
and affective data to facilitate multimodal, real-life affect
recognition. Physiological data is collected using an
Empatica E4 smartwatch. Context data (e.g. physical
activity of subjects) and affective labels are logged using the
subjects’ smartphone. So far (the study is still in progress)
10 subjects participated (four female and six male).
Subjects participated from 7 to 18 days, the mean
participation time was 15± 2.7 days.
In order to capture the subjects’ affective states, an Android
ecological momentary assessment (EMA) app was
developed, incorporating several (shortened,
well-established) questionnaires:

• Self-Assessment Mannequins (SAM [7], see Figure 1)
and the Photographic Affect Meter (PAM [10]) are
used to generate labels in the valence-arousal space.

• One screen is dedicated to emotional categories,
where subjects can select one of the basic emotions
[3] (anger, fear, surprise, happy, disgust, sad) or
"None of them".

• A shortened STAI is used [4], and subjects can rate
their stress level on a four point Likert scale [9].

• Subjects report the intensity of the physical activity
they had been pursuing during the past 10 minutes.

• In the morning, subjects are asked about their sleep
duration and quality [11].

In an initial face-to-face meeting, subjects are instructed on
how to handle the EMA app. Using the EMA app the
subjects filed automatically and manually triggered
self-reports on their affective states. For each subject, the
EMA app was customised to match their diurnal rhythm.
During the configured time span (e.g. 7.30 to 22.30) the
EMA app was triggered automatically roughly every 2 hours



and the subjects received a notification that they should file
an EMA. Further, the subjects were instructed to trigger an
EMA manually when they felt a change in their affective
state.

Paradigms for EMAs in AC
field studies:
Minimal Intrusiveness:
EMAs should be only mini-
mally intrusive.
Autonomy:
Subjects can decide when to
file an EMA.
Multiple sources:
Multiple sources facilitate va-
lidity/plausibility checks.
Motivation:
Motivated subjects file more
EMAs.

Figure 2: Distribution of
questionnaires filed over a day.

Guidelines and lessons learned
In order to ensure optimal objectivity, reliability, and validity
of EMA data, we formulated four paradigms for AC field
studies (see sidebar on the left). Following these
paradigms, we provide guidelines for designing and
applying EMAs in field studies, with the goal to generate
frequent and high quality affective labels. In addition, we
detail how these guidelines were implemented in our study.
Based on 1081 EMAs collected from 10 subjects over a
duration of 148 days, we perform a qualitative analysis of
the effectiveness of these guidelines.

Labels Basic Emo

A 732 119
M 349 111

Total 1081 230

Table 2: Comparison of
automatically (A) and manually (M)
triggered EMAs.

1. Sampling rate and scheduling:
Guidelines: The trade-off between overloading and
sampling the affective state of a subject as frequently as
possible needs to be balanced. Scheduling an EMA every
two hours [17] or approximately five times a day [4] seems
to be adequate.
Implementation: In accordance with [17], we chose to
trigger an EMA automatically every 120± x,
x ∈ (0 < x < 30) minutes. The lag x was introduced to
add randomness to the sampling points. Following an
automatic trigger, the subjects are notified that they should
file an EMA. If subjects do not complete the EMA within 30
minutes after the trigger event, they receive a second
notification. However, the subjects have the freedom to
ignore these notifications completely and file the EMA some
time later.
Insights & lessons learned: Figure 2 displays the distribution
of the number of EMAs filed over a day. Our sampling rate
ensures a mostly even distribution of EMAs. None of our

subjects reported to feel overloaded. Deviations in the
number of completed EMAs at the beginning (6.00-9.00)
and end (21.00-23.00) of the day can be explained by the
differences in the diurnal rhythm of the subjects.

2. Manual trigger of EMAs by subject:
Guidelines: Since automatically triggered EMAs are
completely independent of the affective state of the
subjects, the chance of missing "interesting" events is high.
Labelling these "interesting" events in hindsight is difficult
due to memorization effects (e.g. the perception of the
event under consideration is influenced by the current
affective state). Hence, in addition to randomly scheduled
EMAs, subjects should be able to trigger EMAs manually.
Implementation: In our field study, subjects can trigger an
EMA by simply starting the smartphone EMA app. After a
manual trigger, the subsequent automatically triggered EMA
is postponed, in order to ensure an adequate spacing
between self-reports.
Insights & lessons learned: Table 2 summarises the
number of EMAs filed in our field study. In most EMAs the
subjects reported no basic emotion (by selecting the "None
of them" button). This is plausible as from a psychological
perspective basic emotions form the extreme points of
distinct emotional dimensions. The fraction of reported
"basic emotions" to "None of them" is substantially higher in
the manually triggered EMAs (32 vs 16%). In addition,
comparison of the absolute valence and arousal values
shows higher valence and arousal values for manually
triggered EMAs. Overall, these results suggest that
manually triggered EMAs contain reports on more intense
emotional states. This supports our recommendation to
allow the manual trigger of EMAs.

3. Filing time and number of items:
Guidelines: EMAs should target the core goal of the study,



and they should include as few items as possible. For
example, Muaremi et al. [8] report that they had to reduce
their EMA to 10 items after receiving complaints.
Implementation: While reporting various aspects of
affective states (even in a redundant fashion), we keep the
number of items as low as possible, e.g. by reducing the
number of STAI items. In addition, all questions could be
answered with a single click (no free text or audio report are
necessary).
Insights & lessons learned: In our study the median filing
time of an EMA was 41 seconds. As none of our subjects
complained about the EMA length, we believe that this is a
reasonable filing time.

Figure 3: Reported basic emotions
displayed in the valence-arousal
space.

4. Validity and redundancy of EMAs:
Guidelines: Self-reports are subjective. However, using
well-established questionnaires increases the validity of the
results and enables a comparison to other studies. In
addition, using questionnaires assessing similar constructs
(e.g. basic emotions and points in valence-arousal space)
offers the possibility to check the EMA values for
consistency.
Implementation: We use several well-established scales
(e.g. SAM, STAI) and a list of basic emotions to generate
affective labels in our study. In addition, subjects report their
stress level.
Insights & lessons learned: We performed a correlation
analysis using Pearson’s correlation coefficient. A moderate
positive correlation (0.41) between the STAI and arousal
values was found. In addition, there is a strong positive
correlation (0.66) between the STAI values and the
recorded stress intensity. A moderate negative correlation
(-0.54) was found between the STAI values and reported
valence. The above detailed correlations are significant
(p-values < 0.001). In addition, we calculated the correlation
between valence and arousal labels. Here, no correlation

was found. This finding emphasises that valence and
arousal are two independent scales.
In Figure 3 the reported basic emotions are mapped into the
valence-arousal space. Subjects reported the basic
emotion ’Happy’ only when having a positive valence.
However, ’Happy’ seems to be not affected by the arousal
value. In contrast, subjects only reported ’Anger’ and ’Fear’
when being in a high arousal and low valence state.
’Sadness’ was mostly reported when the subjects were in a
low valence and low arousal state. This redundancy helps
to check the labels for plausibility.

5. Gather context information:
Guidelines: In previous work it has been shown that
physical activities and sleep quality are important context
information in the domain of affect recognition [4, 11].
Hence, we recommend to record this data either
automatically, e.g. using the Android Activity Recognition
API, or as part of the EMAs.
Implementation: In our study, we gather context information
automatically and manually. We employ automatic
location-based services (e.g. weather information) and
activity recognition. In addition, the subjects answer
manually in each EMA a question on the physiological
intensity of their last 10 minutes. Further, the first EMA of
the day includes two items on sleep quality and duration.
Insights & lessons learned: Our dataset will enable
context-sensitive affect recognition. We argue that context
information helps to increase accuracy as it allows, for
instance, to identify labels in close proximity to demanding
physiological activities.

6. Daily data-driven screening:
Guidelines: Understanding field data in hindsight is often
difficult. Therefore, related work suggests to conduct daily
screenings for assessing data quality [5, 6, 8, 12]).



Implementation: We conduct daily, data-driven screenings
on weekdays. During the screening a structured interview is
conducted. Plots of EMAs and physiological data are used
to understand the circumstances of important situations.

Figure 4: EDA data of a subject
during sport. Vertical lines
correspond to filed EMAs.

Insights & lessons learned: The plots helped to gather
further context information on major physical and mental
events of the day. Figure 4 displays the electrodermal
activity (EDA) of a subject during a workout. One
immediately notices the strong increase in EDA values.
Spotting events like this and incorporating them (as notes)
into the structured interview clearly provided a deep insight
into the labels and raw data. During the screenings, the
data quality is also assessed on a daily base. Hence, a
reduced data quality would become apparent timely and
could be corrected by re-instructing the subjects.

Figure 5: Histogram of the number
of questionnaires filed per subject.

Figure 6: Average number of filed
EMAs per day.

7. Ensure commitment:
Guidelines: To motivate study participants to file EMAs,
incremental reward systems [5], or the chance to win an
additional price via a lottery can be employed [15]. Another
way to increase subject motivation is the use of gamification
[1]. Keeping the subjects motivated will ensure high-quality
labels, regarding both frequency and completeness.
Implementation: In our study, every participant receives a
base reward (20egift card for two completed days).
Further, among the five participants providing the most
EMAs, two will be selected randomly to receive an
additional price.
Insights & lessons learned: Figure 5 displays the total
number of EMAs completed by each subject. Apart from S7
who, due to technical reasons, only participated for 7 days
each subject filed more than 80 EMAs. In Figure 6 the
average number of filed EMAs per day is displayed. The
starting day (1) and the last day (14) were omitted as the
subjects participated shorter on these days. Figure 6
indicates that the number of filed EMAs stayed almost

constant over the course of the study. We conclude from
this that the participants stayed motivated and that our
incentive system is working well.

Discussion
We presented guidelines for affective computing (AC) field
studies and evaluated their effectiveness based on our field
study. We are aware that most of our analyses are of a
descriptive nature. Hence, this evaluation is no strict proof
of the guidelines we formulated. However, due to the overall
plausible results we argue that our guidelines were
implemented successfully, leading to high quality labels.
Our guidelines are based on four major paradigms. First,
data should be collected in a minimally intrusive way, only
interfering as little as possible with the subjects’ everyday
life. This paradigm was followed mainly in the guidelines 1
and 3. Second, we rely on the autonomy of subjects, such
that they trigger EMAs manually when they feel a change in
their affective state (guideline 2). Third, data quality can be
assessed and increased using multiple data sources
(physiological, structured interviews, context information
and questionnaires). This notion inspired the guidelines 4,
5, and 6. Fourth, in order to collect large amounts of high
quality data, motivation is key (guideline 7).
Based on experience from our study and participants’
feedback, we would like to formulate one additional
recommendation: During a stressful event (e.g. exam) it is
difficult to complete an EMA. Relying on the subjects’
autonomy, we believe that allowing short hindsight labelling
could be beneficial to further improve label completeness
and quality. Further, allowing the subjects to adjust the time
span of a label (e.g. entire exam duration) could also help to
increase the label accuracy.
We hope that the presented guidelines and lessons learned
are beneficial for the community and find application in
future studies.
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